{"title":"Functionalized typha biochar for antibiotic removal via low-carbon integrated method: Performance and mechanism analyses","authors":"Jingrong Liu, Jing Wen, Jingtao Hu, Yuxuan Ma, Xiaojing Wang, Huiqin Li","doi":"10.1002/clen.202300179","DOIUrl":null,"url":null,"abstract":"<p>Antibiotic residues in water represent an urgent environmental challenge. To efficiently remove these residues, a low-carbon integrated biochar synthesis method was proposed, and an optimized typha biochar (TBI<sub>K</sub>) was prepared. Compared with the biochar prepared by a conventional two-step carbonization and activation method (TBT<sub>K</sub>), the TBI<sub>K</sub> preparation process reduced energy consumption by 43849.58 J and cut carbon dioxide emissions by 32.80%. TBI<sub>K</sub> exhibited a large surface area of 1252.40 m<sup>2</sup>/g and rapidly achieved an equilibrium removal efficiency of 99.95% within 20 min for simulated antibiotics wastewater. Furthermore, TBI<sub>K</sub> possessed more number of functional groups than TBT<sub>K</sub>, especially O-H and C-S groups. The adsorption stability and tolerance of TBI<sub>K</sub> in solutions with different ionic strengths and coexisting anions were examined. Characterization techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) as well as Brunauer, Emmett and Teller (BET) analyses were employed to elucidate the morphology and adsorption mechanism of the adsorbent. The microporous structure and abundance of functional groups are key to the excellent adsorption capabilities of TBI<sub>K</sub>. Thus, this integrated method for biochar production, optimized for treating antibiotic wastewater, holds significant potential for future applications.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300179","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic residues in water represent an urgent environmental challenge. To efficiently remove these residues, a low-carbon integrated biochar synthesis method was proposed, and an optimized typha biochar (TBIK) was prepared. Compared with the biochar prepared by a conventional two-step carbonization and activation method (TBTK), the TBIK preparation process reduced energy consumption by 43849.58 J and cut carbon dioxide emissions by 32.80%. TBIK exhibited a large surface area of 1252.40 m2/g and rapidly achieved an equilibrium removal efficiency of 99.95% within 20 min for simulated antibiotics wastewater. Furthermore, TBIK possessed more number of functional groups than TBTK, especially O-H and C-S groups. The adsorption stability and tolerance of TBIK in solutions with different ionic strengths and coexisting anions were examined. Characterization techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) as well as Brunauer, Emmett and Teller (BET) analyses were employed to elucidate the morphology and adsorption mechanism of the adsorbent. The microporous structure and abundance of functional groups are key to the excellent adsorption capabilities of TBIK. Thus, this integrated method for biochar production, optimized for treating antibiotic wastewater, holds significant potential for future applications.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.