Akingbolabo Daniel Ogunlakin, O. Ojo, Chimzi David Onu-Boms, Oluwafemi Samson Afolayan, P. O. Ayeni, I. A. Akinwumi, Opeyemi J. Akinmurele, G. Adebodun, Damilare Iyinkristi Ayokunle, O. A. Ambali, Omolola Adenike Ajayi-Odoko, O. A. Ogunlakin, M. Sonibare
{"title":"Artocarpus Communis Seed Regulates P53, IRS, HsD17β2, FTO, and CYP11a Genes in Polycystic Ovarian Syndrome Rats","authors":"Akingbolabo Daniel Ogunlakin, O. Ojo, Chimzi David Onu-Boms, Oluwafemi Samson Afolayan, P. O. Ayeni, I. A. Akinwumi, Opeyemi J. Akinmurele, G. Adebodun, Damilare Iyinkristi Ayokunle, O. A. Ambali, Omolola Adenike Ajayi-Odoko, O. A. Ogunlakin, M. Sonibare","doi":"10.21926/obm.genet.2401213","DOIUrl":null,"url":null,"abstract":"Polycystic ovarian syndrome (PCOS) is a prevalent endocrine illness that affects 5-10% of reproductive women globally. It is a multifaceted hormonal disorder characterized by the involvement of numerous molecular mechanisms that contribute to its development. This study investigates the effect of Artocarpus communis seed on the hormonal imbalance and P53, IRS, HsD17β2, FTO, and CYP11a genes expression in the ovaries of letrozole-induced polycystic ovarian syndrome rats. To induce PCOS in 30 female Wistar rats, letrozole was administered at a dosage of 1 mg/kg. For 12 days, Artocarpus communis seed aqueous extract (100 and 250 mg/kg body weight) and Clomiphene citrate (1 mg/kg body weight), a standard medication, were given. ELISA assessed luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol levels. The levels of P53, IRS, HsD17β2, FTO, and CYP11a gene expression in the ovaries were assessed. The aqueous extract reduced LH and increased FSH levels in Letrozole-induced PCOS rats. Additionally, seed aqueous extract (250 mg/kg bw) regulated the expression of P53, type 2 17-HSD (17-HSD), fat mass and obesity-associated (FTO), 11a-hydroxylase/17,20-desmolase (CYP11a), and insulin receptor substrate (IRS) genes in the ovaries of PCOS rats. Therefore, Artocarpus communis seed might have multifaceted effects on molecular pathways associated with PCOS, potentially normalizing androgen metabolism, hormonal imbalance, and ovarian function.","PeriodicalId":503721,"journal":{"name":"OBM Genetics","volume":"13 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OBM Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/obm.genet.2401213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polycystic ovarian syndrome (PCOS) is a prevalent endocrine illness that affects 5-10% of reproductive women globally. It is a multifaceted hormonal disorder characterized by the involvement of numerous molecular mechanisms that contribute to its development. This study investigates the effect of Artocarpus communis seed on the hormonal imbalance and P53, IRS, HsD17β2, FTO, and CYP11a genes expression in the ovaries of letrozole-induced polycystic ovarian syndrome rats. To induce PCOS in 30 female Wistar rats, letrozole was administered at a dosage of 1 mg/kg. For 12 days, Artocarpus communis seed aqueous extract (100 and 250 mg/kg body weight) and Clomiphene citrate (1 mg/kg body weight), a standard medication, were given. ELISA assessed luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol levels. The levels of P53, IRS, HsD17β2, FTO, and CYP11a gene expression in the ovaries were assessed. The aqueous extract reduced LH and increased FSH levels in Letrozole-induced PCOS rats. Additionally, seed aqueous extract (250 mg/kg bw) regulated the expression of P53, type 2 17-HSD (17-HSD), fat mass and obesity-associated (FTO), 11a-hydroxylase/17,20-desmolase (CYP11a), and insulin receptor substrate (IRS) genes in the ovaries of PCOS rats. Therefore, Artocarpus communis seed might have multifaceted effects on molecular pathways associated with PCOS, potentially normalizing androgen metabolism, hormonal imbalance, and ovarian function.