{"title":"Analyzing the Mechanical, Durability, and Microstructural Impact of Partial Cement Replacement with Pumice Powder and Bamboo Leaf Ash in Concrete","authors":"Haris Hassen Adem, Fikreyesus Demeke Cherkos","doi":"10.1155/2024/5119850","DOIUrl":null,"url":null,"abstract":"This study explores the physiomechanical and durability properties of C-25 concrete by partially replacing cement with blends of pumice powder (PP) and bamboo leaf ash (BLA). The combined amount of major oxides SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> in PP is 84.59%, while in BLA, it is 74.4%, classifying PP and BLA as class N and F pozzolans. Subsequently, the study examines the impact of different cement replacement percentages, emphasizing 5%, 10%, 15%, and 20% on C-25 with varying mixes of concrete: Mix-1 (100, 0, and 0), Mix-2 (90, 5, and 5), Mix-3 (85, 10, and 5), Mix-4 (85, 5, and 10), and Mix-5 (80, 10, and 10) which correspond to the proportions of OPC, VPP, and BLA used in each mix respectively and by using 1 : 2.34 : 2.68 (cement : sand : aggregate) with the water/cement ratio (w/c) of 0.491. The study’s findings indicate that as the proportion of PP and BLA increases in concrete, the workability of the mixture decreases. Moreover, on the 28th day, Mix-2 with (35.84 MPa) and Mix-3 with (33.55 MPa) met the desired mean compressive strength (33.5 MPa) required for C-25 concrete per the ACI standards. Additionally, the flexural strength of concrete produced with partial replacement of Mix-2 with a flexural strength of 3.86 MPa fulfills the minimum strength requirement of 3.5 MPa specified by the C-25 ACI standards. The PP and BLA blended concrete had lower water absorption than the control mix in Mix-2. It also improved resistance to sulfuric acid attack, and Mix-3 had the least strength reduction of 9.59%. In contrast, the control mix has a 33.34% strength reduction.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"156 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5119850","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the physiomechanical and durability properties of C-25 concrete by partially replacing cement with blends of pumice powder (PP) and bamboo leaf ash (BLA). The combined amount of major oxides SiO2, Al2O3, and Fe2O3 in PP is 84.59%, while in BLA, it is 74.4%, classifying PP and BLA as class N and F pozzolans. Subsequently, the study examines the impact of different cement replacement percentages, emphasizing 5%, 10%, 15%, and 20% on C-25 with varying mixes of concrete: Mix-1 (100, 0, and 0), Mix-2 (90, 5, and 5), Mix-3 (85, 10, and 5), Mix-4 (85, 5, and 10), and Mix-5 (80, 10, and 10) which correspond to the proportions of OPC, VPP, and BLA used in each mix respectively and by using 1 : 2.34 : 2.68 (cement : sand : aggregate) with the water/cement ratio (w/c) of 0.491. The study’s findings indicate that as the proportion of PP and BLA increases in concrete, the workability of the mixture decreases. Moreover, on the 28th day, Mix-2 with (35.84 MPa) and Mix-3 with (33.55 MPa) met the desired mean compressive strength (33.5 MPa) required for C-25 concrete per the ACI standards. Additionally, the flexural strength of concrete produced with partial replacement of Mix-2 with a flexural strength of 3.86 MPa fulfills the minimum strength requirement of 3.5 MPa specified by the C-25 ACI standards. The PP and BLA blended concrete had lower water absorption than the control mix in Mix-2. It also improved resistance to sulfuric acid attack, and Mix-3 had the least strength reduction of 9.59%. In contrast, the control mix has a 33.34% strength reduction.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.