{"title":"A comprehensive review on speed breeding methods and applications","authors":"Nischay Chaudhary, Rubby Sandhu","doi":"10.1007/s10681-024-03300-x","DOIUrl":null,"url":null,"abstract":"<p>To meet the rising requirement for food production, by 2050, it is necessary to increase global production two-fold, necessitating the growth of new crop varieties. However, this process is time-consuming, largely determined by the crop's generation period. To address this challenge, Speed Breeding (SB) technology leverages controlled environmental conditions to accelerate plant development, allowing for the multiplication of many generations per year. SB also allows for the integration of advanced protocols such as gene editing, phenotyping, and genotyping accelerating crop improvement. SB has been effectively applied to various crops, including cereals, pulses and canola crops, producing 4–6 generations in a year. With its application to a wide range of crops and lower labor requirements than breeding methods, SB offers a practical and efficient option for crops with large populations. Speed breeding has come up as a highly efficient and potent method for rapidly developing new plant varieties. Notable successes have been achieved in crops like cereals, oilseed and vegetables where new cultivars have been developed with desirable attributes such as more protein content, disease resistance, salt tolerance and drought tolerance. Overall, speed breeding offers an accessible and transformative option for crop improvement, which will definitely help in global agricultural demand and mitigate the result of climate alteration on agriculture. This review provides a glance of SB's activities across various crops and its significance in the current context of crop improvement.</p>","PeriodicalId":11803,"journal":{"name":"Euphytica","volume":"56 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euphytica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10681-024-03300-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the rising requirement for food production, by 2050, it is necessary to increase global production two-fold, necessitating the growth of new crop varieties. However, this process is time-consuming, largely determined by the crop's generation period. To address this challenge, Speed Breeding (SB) technology leverages controlled environmental conditions to accelerate plant development, allowing for the multiplication of many generations per year. SB also allows for the integration of advanced protocols such as gene editing, phenotyping, and genotyping accelerating crop improvement. SB has been effectively applied to various crops, including cereals, pulses and canola crops, producing 4–6 generations in a year. With its application to a wide range of crops and lower labor requirements than breeding methods, SB offers a practical and efficient option for crops with large populations. Speed breeding has come up as a highly efficient and potent method for rapidly developing new plant varieties. Notable successes have been achieved in crops like cereals, oilseed and vegetables where new cultivars have been developed with desirable attributes such as more protein content, disease resistance, salt tolerance and drought tolerance. Overall, speed breeding offers an accessible and transformative option for crop improvement, which will definitely help in global agricultural demand and mitigate the result of climate alteration on agriculture. This review provides a glance of SB's activities across various crops and its significance in the current context of crop improvement.
期刊介绍:
Euphytica is an international journal on theoretical and applied aspects of plant breeding. It publishes critical reviews and papers on the results of original research related to plant breeding.
The integration of modern and traditional plant breeding is a growing field of research using transgenic crop plants and/or marker assisted breeding in combination with traditional breeding tools. The content should cover the interests of researchers directly or indirectly involved in plant breeding, at universities, breeding institutes, seed industries, plant biotech companies and industries using plant raw materials, and promote stability, adaptability and sustainability in agriculture and agro-industries.