Refining the major-effect QTL and candidate genes associated with grain number per panicle by QTL-seq in rice (Oryza sativa L.)

IF 1.6 3区 农林科学 Q2 AGRONOMY Euphytica Pub Date : 2024-09-12 DOI:10.1007/s10681-024-03410-6
Gunasekaran Ariharasutharsan, Adhimoolam Karthikeyan, Seshadri Geetha, Ramasamy Saraswathi, Muthurajan Raveendran, Karuppasamy Krishna-Surendar, Latha-Devi Ananda-Lekshmi, Amudha Kailappan, Ramalingam Suresh, Natarajan Devasena
{"title":"Refining the major-effect QTL and candidate genes associated with grain number per panicle by QTL-seq in rice (Oryza sativa L.)","authors":"Gunasekaran Ariharasutharsan, Adhimoolam Karthikeyan, Seshadri Geetha, Ramasamy Saraswathi, Muthurajan Raveendran, Karuppasamy Krishna-Surendar, Latha-Devi Ananda-Lekshmi, Amudha Kailappan, Ramalingam Suresh, Natarajan Devasena","doi":"10.1007/s10681-024-03410-6","DOIUrl":null,"url":null,"abstract":"<p>Rice grain yield is a major focus of rice breeding, and with grain number per panicle being a major trait that largely determines overall grain yield. Despite its importance, the genetic architecture and underlying mechanisms governing grain number per panicle are not well understood. In this study, we adopted a whole-genome resequencing-based QTL-seq analysis to trace genomic regions related with grain number per panicle using a mapping population derived from a cross between CB12132 (High grain number) and IET28835 (Low grain number). This approach revealed five candidate genomic regions: <i>qGNPP1.1</i> (10.40 Mb to 12.76 Mb), <i>qGNPP1.2</i> (24.61 Mb to 25.33 Mb), <i>qGNPP1.3</i> (26.57 Mb to 27.26 Mb), <i>qGNPP4.</i>1 (27.70 Mb to 31.34 Mb), and <i>qGNPP5.1</i> (2.12 Mb to 5.50 Mb) on chromosomes 1, 4, and 5, respectively. Further, we searched for possible candidate genes using a comprehensive approach that included the analysis of gene sequences, functional annotation, and expression patterns. A total of 23 candidate genes, including most possible genes <i>Os01g0292900 (SPL1)</i>, <i>Os01g0622000 (OsCUGT1)</i>, <i>Os01g0655300 (SDG705)</i>, <i>Os04g0615000 (NAL1)</i>, <i>Os04g0559800 (SMG2)</i> and <i>Os05g0155200 (ERS2)</i>, were identified across the five candidate genomic regions. Collectively, our study results shed light on the genetic mechanisms underlying grain number per panicle in rice and will be helpful for improving grain yield in future rice breeding programs.</p>","PeriodicalId":11803,"journal":{"name":"Euphytica","volume":"59 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euphytica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10681-024-03410-6","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice grain yield is a major focus of rice breeding, and with grain number per panicle being a major trait that largely determines overall grain yield. Despite its importance, the genetic architecture and underlying mechanisms governing grain number per panicle are not well understood. In this study, we adopted a whole-genome resequencing-based QTL-seq analysis to trace genomic regions related with grain number per panicle using a mapping population derived from a cross between CB12132 (High grain number) and IET28835 (Low grain number). This approach revealed five candidate genomic regions: qGNPP1.1 (10.40 Mb to 12.76 Mb), qGNPP1.2 (24.61 Mb to 25.33 Mb), qGNPP1.3 (26.57 Mb to 27.26 Mb), qGNPP4.1 (27.70 Mb to 31.34 Mb), and qGNPP5.1 (2.12 Mb to 5.50 Mb) on chromosomes 1, 4, and 5, respectively. Further, we searched for possible candidate genes using a comprehensive approach that included the analysis of gene sequences, functional annotation, and expression patterns. A total of 23 candidate genes, including most possible genes Os01g0292900 (SPL1), Os01g0622000 (OsCUGT1), Os01g0655300 (SDG705), Os04g0615000 (NAL1), Os04g0559800 (SMG2) and Os05g0155200 (ERS2), were identified across the five candidate genomic regions. Collectively, our study results shed light on the genetic mechanisms underlying grain number per panicle in rice and will be helpful for improving grain yield in future rice breeding programs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过QTL-seq分析水稻(Oryza sativa L.)中与每粒粒数相关的主要效应QTL和候选基因
水稻籽粒产量是水稻育种的一个重点,而每穗粒数则是在很大程度上决定整体籽粒产量的一个主要性状。尽管每穗粒数非常重要,但人们对其遗传结构和内在机制还不甚了解。在本研究中,我们采用了基于全基因组重测序的 QTL-seq 分析方法,利用 CB12132(高粒数)和 IET28835(低粒数)杂交产生的制图群体,追踪与每穗粒数有关的基因组区域。这一方法发现了五个候选基因组区域:qGNPP1.1(10.40 Mb 至 12.76 Mb)、qGNPP1.2(24.61 Mb 至 25.33 Mb)、qGNPP1.3(26.57 Mb 至 27.26 Mb)、qGNPP4.1(27.70 Mb 至 31.34 Mb)和 qGNPP5.1(2.12 Mb 至 5.50 Mb),分别位于 1、4 和 5 号染色体上。此外,我们还采用包括基因序列分析、功能注释和表达模式分析在内的综合方法寻找可能的候选基因。在五个候选基因组区域中共发现了 23 个候选基因,包括大多数可能的基因 Os01g0292900 (SPL1)、Os01g0622000 (OsCUGT1)、Os01g0655300 (SDG705)、Os04g0615000 (NAL1)、Os04g0559800 (SMG2) 和 Os05g0155200 (ERS2)。总之,我们的研究结果揭示了水稻每穗粒数的遗传机制,将有助于在未来的水稻育种计划中提高谷物产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Euphytica
Euphytica 农林科学-农艺学
CiteScore
3.80
自引率
5.30%
发文量
157
审稿时长
4.5 months
期刊介绍: Euphytica is an international journal on theoretical and applied aspects of plant breeding. It publishes critical reviews and papers on the results of original research related to plant breeding. The integration of modern and traditional plant breeding is a growing field of research using transgenic crop plants and/or marker assisted breeding in combination with traditional breeding tools. The content should cover the interests of researchers directly or indirectly involved in plant breeding, at universities, breeding institutes, seed industries, plant biotech companies and industries using plant raw materials, and promote stability, adaptability and sustainability in agriculture and agro-industries.
期刊最新文献
Refining the major-effect QTL and candidate genes associated with grain number per panicle by QTL-seq in rice (Oryza sativa L.) Breeding for resistance to bacterial wilt in Solanaceae crops: lessons learned and ways forward for Gboma eggplant (Solanum macrocarpon L.), a traditional African vegetable QTL mapping and epistatic interactions for improved seed oil quality in safflower Early sex identification by leaflet distance in plantlets of Cycas revoluta Exploring variability for morphological and quality traits in natural seedling origin mango germplasm of South Gujarat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1