Genetic and functional modulation by agonist MRS5698 and allosteric enhancer LUF6000 at the native A3 adenosine receptor in HL-60 cells.

IF 3 4区 医学 Q2 NEUROSCIENCES Purinergic Signalling Pub Date : 2024-10-01 Epub Date: 2024-02-28 DOI:10.1007/s11302-024-09992-z
Zhan-Guo Gao, Weiping Chen, Ray R Gao, Jonathan Li, Dilip K Tosh, John A Hanover, Kenneth A Jacobson
{"title":"Genetic and functional modulation by agonist MRS5698 and allosteric enhancer LUF6000 at the native A<sub>3</sub> adenosine receptor in HL-60 cells.","authors":"Zhan-Guo Gao, Weiping Chen, Ray R Gao, Jonathan Li, Dilip K Tosh, John A Hanover, Kenneth A Jacobson","doi":"10.1007/s11302-024-09992-z","DOIUrl":null,"url":null,"abstract":"<p><p>The A<sub>3</sub> adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A<sub>3</sub>AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1β, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1β, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A<sub>3</sub>AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A<sub>3</sub>AR and in recombinant hA<sub>3</sub>AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A<sub>3</sub>AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA<sub>3</sub>AR.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"559-570"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-024-09992-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1β, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1β, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激动剂 MRS5698 和异位增强剂 LUF6000 对 HL-60 细胞中原生 A3 腺苷受体的遗传和功能调节。
A3腺苷受体(AR)是一个重要的炎症和免疫学靶点。然而,其潜在机制尚未完全明了。在此,我们报告了用高选择性 A3AR 激动剂 MRS5698、正异位调节剂(PAM)LUF6000 或两者同时急性处理 HL-60 细胞的基因调控情况。促炎和抗炎基因,如 IL-1a、IL-1β 和 NFκBIZ 都明显上调。在我们的观察中,单独使用 LUF6000 产生的效果较小,而 MRS5698 + LUF6000 组的效果普遍大于单独使用 MRS5698 组,这与异位增强作用一致。上调和下调的基因数量相似。通路分析强调了信号分子的关键参与,包括 IL-6 和 IL-17。重要的上游调节因子包括 IL-1a、IL-1β、TNF-α、NF-κB 等。A3AR激动剂高度下调了调节类二十酸代谢的PPAR。考虑到之前的药理结果和数学模型,LUF6000 对基因上调的小幅增强表明 MRS5698 几乎是一种完全激动剂,我们在 cAMP 和钙测定中都证明了这一点。在内源性表达人(h)A3AR 的 HL-60 细胞和重组表达 hA3AR 的 CHO 细胞中,LUF6000 对 MRS5698 的影响小于对 Cl-IB-MECA 的影响,这与 HL-60 细胞的遗传调控模式一致。总之,通过使用选择性激动剂和 PAM,我们确定了与免疫和炎症密切相关的基因在分化的 HL-60 细胞(中性粒细胞功能的细胞模型)中受 A3AR 调节。此外,我们还证明了 LUF6000 在内源性表达 hA3AR 的细胞中具有以前从未描述过的异源信号增强效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
期刊最新文献
Correction to: Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist. Machine learning-aided search for ligands of P2Y6 and other P2Y receptors. Purinergic regulation of pulmonary vascular tone. Role of ecto-5'-nucleotidase in bladder function activity and smooth muscle contractility. Unexpected role of microglia and P2Y12 in the induction of and emergence from anesthesia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1