Zhan-Guo Gao, Ray R Gao, Clayton K Meyer, Kenneth A Jacobson
{"title":"A<sub>2B</sub> adenosine receptor-triggered intracellular calcium mobilization: Cell type-dependent involvement of G<sub>i</sub>, G<sub>q</sub>, G<sub>s</sub> proteins and protein kinase C.","authors":"Zhan-Guo Gao, Ray R Gao, Clayton K Meyer, Kenneth A Jacobson","doi":"10.1007/s11302-025-10070-1","DOIUrl":null,"url":null,"abstract":"<p><p>Activation of PLCβ enzymes by G<sub>iβγ</sub> and G<sub>αq/11</sub> proteins is a common mechanism to trigger cytosolic Ca<sup>2+</sup> increase. We and others reported that G<sub>αq/11</sub> inhibitor FR900359 (FR) can inhibit both G<sub>αq</sub>- and, surprisingly, G<sub>iβγ</sub>-mediated intracellular Ca<sup>2+</sup> mobilization. Thus, the G<sub>αi</sub>-G<sub>βγ</sub>-PLCβ-Ca<sup>2+</sup> signaling axis depends entirely on the presence of active G<sub>αq</sub>, which reasonably explained FR-inhibited G<sub>iβγ</sub>-induced Ca<sup>2+</sup> release. However, the conclusion that G<sub>iβγ</sub> signaling is controlled by G<sub>αq</sub> derives mostly from HEK293 cells. Here we show that indeed in HEK293 cells both G<sub>αq/11</sub> siRNA and G<sub>αq/11</sub> inhibitors diminished Ca<sup>2+</sup> increase triggered by native G<sub>q</sub>-coupled P2Y<sub>1</sub> receptors, or by transfected G<sub>i</sub>-coupled A<sub>1</sub>- or G<sub>s</sub>-coupled A<sub>2B</sub> adenosine receptors (ARs). However, in T24 bladder cancer cells, G<sub>i</sub> inhibitor PTX, but not G<sub>αq/11</sub> inhibitors, FR, YM254890 (YM) or G<sub>q/11</sub> siRNA, inhibited Ca<sup>2+</sup> increase triggered by native A<sub>2B</sub>AR activation. Simultaneous inactivation of G<sub>i</sub> and G<sub>s</sub> further suppressed A<sub>2B</sub>AR-triggered Ca<sup>2+</sup> increase in T24 cells. The G<sub>αq/11</sub> inhibitor YM fully and partially inhibited endogenous P2Y<sub>1</sub>- and β<sub>2</sub>-adrenergic receptor-induced Ca<sup>2+</sup> increase in T24 cells, respectively. PKC activator PMA partially diminished A<sub>2B</sub>AR-triggered but completely diminished β<sub>2</sub>-adrenergic receptor-triggered Ca<sup>2+</sup> increase in T24 cells. Neither β-arrestin1 nor β-arrestin2 siRNA affected A<sub>2B</sub>AR-mediated Ca<sup>2+</sup> increase. Unlike in T24 cells, YM inhibited native A<sub>2B</sub>AR-triggered calcium mobilization in MDA-MB-231 breast cancer cells. Thus, G<sub>αq/11</sub> is vital for Ca<sup>2+</sup> increase in some cell types, but G<sub>iβγ</sub>-mediated Ca<sup>2+</sup> signaling can be Gα<sub>q/11</sub>-dependent or independent based on cell type and receptor activated. Besides G proteins, PKC also modulates cytosolic Ca<sup>2+</sup> increase depending on cell type and receptor.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10070-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Activation of PLCβ enzymes by Giβγ and Gαq/11 proteins is a common mechanism to trigger cytosolic Ca2+ increase. We and others reported that Gαq/11 inhibitor FR900359 (FR) can inhibit both Gαq- and, surprisingly, Giβγ-mediated intracellular Ca2+ mobilization. Thus, the Gαi-Gβγ-PLCβ-Ca2+ signaling axis depends entirely on the presence of active Gαq, which reasonably explained FR-inhibited Giβγ-induced Ca2+ release. However, the conclusion that Giβγ signaling is controlled by Gαq derives mostly from HEK293 cells. Here we show that indeed in HEK293 cells both Gαq/11 siRNA and Gαq/11 inhibitors diminished Ca2+ increase triggered by native Gq-coupled P2Y1 receptors, or by transfected Gi-coupled A1- or Gs-coupled A2B adenosine receptors (ARs). However, in T24 bladder cancer cells, Gi inhibitor PTX, but not Gαq/11 inhibitors, FR, YM254890 (YM) or Gq/11 siRNA, inhibited Ca2+ increase triggered by native A2BAR activation. Simultaneous inactivation of Gi and Gs further suppressed A2BAR-triggered Ca2+ increase in T24 cells. The Gαq/11 inhibitor YM fully and partially inhibited endogenous P2Y1- and β2-adrenergic receptor-induced Ca2+ increase in T24 cells, respectively. PKC activator PMA partially diminished A2BAR-triggered but completely diminished β2-adrenergic receptor-triggered Ca2+ increase in T24 cells. Neither β-arrestin1 nor β-arrestin2 siRNA affected A2BAR-mediated Ca2+ increase. Unlike in T24 cells, YM inhibited native A2BAR-triggered calcium mobilization in MDA-MB-231 breast cancer cells. Thus, Gαq/11 is vital for Ca2+ increase in some cell types, but Giβγ-mediated Ca2+ signaling can be Gαq/11-dependent or independent based on cell type and receptor activated. Besides G proteins, PKC also modulates cytosolic Ca2+ increase depending on cell type and receptor.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.