Steffen T Eberhardt, Jana Schaffrath, Danilo Moggia, Brian Schwartz, Martin Jaehde, Julian A Rubel, Tobias Baur, Elisabeth André, Wolfgang Lutz
{"title":"Decoding emotions: Exploring the validity of sentiment analysis in psychotherapy.","authors":"Steffen T Eberhardt, Jana Schaffrath, Danilo Moggia, Brian Schwartz, Martin Jaehde, Julian A Rubel, Tobias Baur, Elisabeth André, Wolfgang Lutz","doi":"10.1080/10503307.2024.2322522","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Given the importance of emotions in psychotherapy, valid measures are essential for research and practice. As emotions are expressed at different levels, multimodal measurements are needed for a nuanced assessment. Natural Language Processing (NLP) could augment the measurement of emotions. The study explores the validity of sentiment analysis in psychotherapy transcripts.</p><p><strong>Method: </strong>We used a transformer-based NLP algorithm to analyze sentiments in 85 transcripts from 35 patients. Construct and criterion validity were evaluated using self- and therapist reports and process and outcome measures via correlational, multitrait-multimethod, and multilevel analyses.</p><p><strong>Results: </strong>The results provide indications in support of the sentiments' validity. For example, sentiments were significantly related to self- and therapist reports of emotions in the same session. Sentiments correlated significantly with in-session processes (e.g., coping experiences), and an increase in positive sentiments throughout therapy predicted better outcomes after treatment termination.</p><p><strong>Discussion: </strong>Sentiment analysis could serve as a valid approach to assessing the emotional tone of psychotherapy sessions and may contribute to the multimodal measurement of emotions. Future research could combine sentiment analysis with automatic emotion recognition in facial expressions and vocal cues via the Nonverbal Behavior Analyzer (NOVA). Limitations (e.g., exploratory study with numerous tests) and opportunities are discussed.</p>","PeriodicalId":48159,"journal":{"name":"Psychotherapy Research","volume":" ","pages":"174-189"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychotherapy Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10503307.2024.2322522","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Given the importance of emotions in psychotherapy, valid measures are essential for research and practice. As emotions are expressed at different levels, multimodal measurements are needed for a nuanced assessment. Natural Language Processing (NLP) could augment the measurement of emotions. The study explores the validity of sentiment analysis in psychotherapy transcripts.
Method: We used a transformer-based NLP algorithm to analyze sentiments in 85 transcripts from 35 patients. Construct and criterion validity were evaluated using self- and therapist reports and process and outcome measures via correlational, multitrait-multimethod, and multilevel analyses.
Results: The results provide indications in support of the sentiments' validity. For example, sentiments were significantly related to self- and therapist reports of emotions in the same session. Sentiments correlated significantly with in-session processes (e.g., coping experiences), and an increase in positive sentiments throughout therapy predicted better outcomes after treatment termination.
Discussion: Sentiment analysis could serve as a valid approach to assessing the emotional tone of psychotherapy sessions and may contribute to the multimodal measurement of emotions. Future research could combine sentiment analysis with automatic emotion recognition in facial expressions and vocal cues via the Nonverbal Behavior Analyzer (NOVA). Limitations (e.g., exploratory study with numerous tests) and opportunities are discussed.
期刊介绍:
Psychotherapy Research seeks to enhance the development, scientific quality, and social relevance of psychotherapy research and to foster the use of research findings in practice, education, and policy formulation. The Journal publishes reports of original research on all aspects of psychotherapy, including its outcomes, its processes, education of practitioners, and delivery of services. It also publishes methodological, theoretical, and review articles of direct relevance to psychotherapy research. The Journal is addressed to an international, interdisciplinary audience and welcomes submissions dealing with diverse theoretical orientations, treatment modalities.