Jing-Jing Li , Chengchun Shi , Lexin Li , Anne G.E. Collins
{"title":"Dynamic noise estimation: A generalized method for modeling noise fluctuations in decision-making","authors":"Jing-Jing Li , Chengchun Shi , Lexin Li , Anne G.E. Collins","doi":"10.1016/j.jmp.2024.102842","DOIUrl":null,"url":null,"abstract":"<div><p>Computational cognitive modeling is an important tool for understanding the processes supporting human and animal decision-making. Choice data in decision-making tasks are inherently noisy, and separating noise from signal can improve the quality of computational modeling. Common approaches to model decision noise often assume constant levels of noise or exploration throughout learning (e.g., the <span><math><mi>ϵ</mi></math></span>-softmax policy). However, this assumption is not guaranteed to hold – for example, a subject might disengage and lapse into an inattentive phase for a series of trials in the middle of otherwise low-noise performance. Here, we introduce a new, computationally inexpensive method to dynamically estimate the levels of noise fluctuations in choice behavior, under a model assumption that the agent can transition between two discrete latent states (e.g., fully engaged and random). Using simulations, we show that modeling noise levels dynamically instead of statically can substantially improve model fit and parameter estimation, especially in the presence of long periods of noisy behavior, such as prolonged lapses of attention. We further demonstrate the empirical benefits of dynamic noise estimation at the individual and group levels by validating it on four published datasets featuring diverse populations, tasks, and models. Based on the theoretical and empirical evaluation of the method reported in the current work, we expect that dynamic noise estimation will improve modeling in many decision-making paradigms over the static noise estimation method currently used in the modeling literature, while keeping additional model complexity and assumptions minimal.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"119 ","pages":"Article 102842"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000129","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Computational cognitive modeling is an important tool for understanding the processes supporting human and animal decision-making. Choice data in decision-making tasks are inherently noisy, and separating noise from signal can improve the quality of computational modeling. Common approaches to model decision noise often assume constant levels of noise or exploration throughout learning (e.g., the -softmax policy). However, this assumption is not guaranteed to hold – for example, a subject might disengage and lapse into an inattentive phase for a series of trials in the middle of otherwise low-noise performance. Here, we introduce a new, computationally inexpensive method to dynamically estimate the levels of noise fluctuations in choice behavior, under a model assumption that the agent can transition between two discrete latent states (e.g., fully engaged and random). Using simulations, we show that modeling noise levels dynamically instead of statically can substantially improve model fit and parameter estimation, especially in the presence of long periods of noisy behavior, such as prolonged lapses of attention. We further demonstrate the empirical benefits of dynamic noise estimation at the individual and group levels by validating it on four published datasets featuring diverse populations, tasks, and models. Based on the theoretical and empirical evaluation of the method reported in the current work, we expect that dynamic noise estimation will improve modeling in many decision-making paradigms over the static noise estimation method currently used in the modeling literature, while keeping additional model complexity and assumptions minimal.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory