{"title":"Tensor-train compression of discrete element method simulation data","authors":"Saibal De , Eduardo Corona , Paramsothy Jayakumar , Shravan Veerapaneni","doi":"10.1016/j.jterra.2024.100967","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a framework for discrete scientific data compression based on the tensor-train (TT) decomposition. Our approach is tailored to handle unstructured output data from discrete element method (DEM) simulations, demonstrating its effectiveness in compressing both raw (e.g.<!--> <!-->particle position and velocity) and derived (e.g.<!--> <!-->stress and strain) datasets. We show that geometry-driven “tensorization” coupled with the TT decomposition (known as quantized TT) yields a hierarchical compression scheme, achieving high compression ratios for key variables in these DEM datasets.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100967"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000090","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a framework for discrete scientific data compression based on the tensor-train (TT) decomposition. Our approach is tailored to handle unstructured output data from discrete element method (DEM) simulations, demonstrating its effectiveness in compressing both raw (e.g. particle position and velocity) and derived (e.g. stress and strain) datasets. We show that geometry-driven “tensorization” coupled with the TT decomposition (known as quantized TT) yields a hierarchical compression scheme, achieving high compression ratios for key variables in these DEM datasets.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.