{"title":"Simple shear methodology for local structure–property relationships of sheet metals: State-of-the-art and open issues","authors":"Guofeng Han , Ji He , Shuhui Li , Zhongqin Lin","doi":"10.1016/j.pmatsci.2024.101266","DOIUrl":null,"url":null,"abstract":"<div><p>Simple shear presents a local material structure–property relationship and plays an important role in the development of material design, mechanical modeling, and manufacturing processes for sheet metals. Simple shear tests are extensively adopted to reveal the stress-state-dependent mechanisms of material microstructure evolution with their corresponding mechanical properties, to develop sophisticated constitutive models capturing complex mechanical behaviors, and to precisely characterize the failure limits for shear-dominated or large-strain deformation processes. Thus, the simple shear methodology including specimen geometry, fixing and loading device, data acquisition and the set of procedures for results analysis, has become a topic of growing interest because of its various distinctive capacities. Over the years, several simple shear analyses and test methods have been proposed without a unified understanding. Interpreting the experimental results can be confusing due to the complexity of finite deformation, variety of boundary conditions in practice, and complexity of the mechanical behavior of materials; however, neither a widely accepted protocol nor a systematic overview of this topic exists. To fill this gap, the present study attempts to provide a comprehensive review of the simple shear methodology for sheet metals, which will serve as a reference for summarizing substantial efforts to improve the understanding and gain valuable scientific insight, a guideline to discover local structure–property relationships of materials, and a solid step for shedding light on its standardization. In this paper, the motivation for the development of a simple shear methodology is first discussed, and the recent progress in experimental mechanics and experimental technologies is summarized. Its application in understanding the mechanical behaviors (hardening, yielding, and ductile fracture) is focused on, and the structure–property relationships revealed by simple shear are further highlighted. The challenges and prospects for future research are discussed. The principles, methodologies, and perspectives provided are highly relevant and are expected to benefit emerging areas such as heterostructured materials, micro/nanoscale mechanical testing, nonlocal plasticity, and additive manufacturing (AM).</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"143 ","pages":"Article 101266"},"PeriodicalIF":33.6000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000355","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Simple shear presents a local material structure–property relationship and plays an important role in the development of material design, mechanical modeling, and manufacturing processes for sheet metals. Simple shear tests are extensively adopted to reveal the stress-state-dependent mechanisms of material microstructure evolution with their corresponding mechanical properties, to develop sophisticated constitutive models capturing complex mechanical behaviors, and to precisely characterize the failure limits for shear-dominated or large-strain deformation processes. Thus, the simple shear methodology including specimen geometry, fixing and loading device, data acquisition and the set of procedures for results analysis, has become a topic of growing interest because of its various distinctive capacities. Over the years, several simple shear analyses and test methods have been proposed without a unified understanding. Interpreting the experimental results can be confusing due to the complexity of finite deformation, variety of boundary conditions in practice, and complexity of the mechanical behavior of materials; however, neither a widely accepted protocol nor a systematic overview of this topic exists. To fill this gap, the present study attempts to provide a comprehensive review of the simple shear methodology for sheet metals, which will serve as a reference for summarizing substantial efforts to improve the understanding and gain valuable scientific insight, a guideline to discover local structure–property relationships of materials, and a solid step for shedding light on its standardization. In this paper, the motivation for the development of a simple shear methodology is first discussed, and the recent progress in experimental mechanics and experimental technologies is summarized. Its application in understanding the mechanical behaviors (hardening, yielding, and ductile fracture) is focused on, and the structure–property relationships revealed by simple shear are further highlighted. The challenges and prospects for future research are discussed. The principles, methodologies, and perspectives provided are highly relevant and are expected to benefit emerging areas such as heterostructured materials, micro/nanoscale mechanical testing, nonlocal plasticity, and additive manufacturing (AM).
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.