Pyrolysis temperature affects biochar suitability as an alternative rhizobial carrier

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-02-29 DOI:10.1007/s00374-024-01805-0
{"title":"Pyrolysis temperature affects biochar suitability as an alternative rhizobial carrier","authors":"","doi":"10.1007/s00374-024-01805-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Biochars produced from different feedstocks and at different pyrolysis temperatures may have various chemical and physical properties, affecting their potential use as alternative microbial carrier materials. In this study, biochars were produced from pine wood and oak feedstocks at various temperatures (400°C, 500°C, 600°C, 700°C and 800°C), characterized, and assessed for their potential as carriers for <em>Bradyrhizobium japonicum</em> (CB1809) strain. The biochars were then stored at two different storage temperatures (28°C and 38°C) for up to 90 days. Furthermore, the study also explored the role of potentially ideal carriers as inoculants in the growth of <em>Glycine max L.</em> (soybean) under different moisture levels i.e., 55% water holding capacity (WHC) (D0), 30% WHC (D1) and, 15% WHC (D2) using a mixture of 50% garden soil and 50% sand. The results were compared to a control group (without inoculants) and a peat inoculant. Among all the materials derived from pine wood and oak, pine wood biochar pyrolyzed at 400℃ (P-BC400) exhibited the highest CFU count, with values of 10.34 and 9.74 Log 10 CFU g<sup>− 1</sup> after 90 days of storage at 28℃ and 38℃, respectively. This was notably higher compared to other biochars and peat carriers. Significant (<em>p</em> &lt; 0.05) increases in plant properties: shoot and root dry biomass (174% and 367%), shoot and root length (89% and 85%), number of leaves (71%), membrane stability index (27%), relative water content (26%), and total chlorophyll (140%) were observed in plants treated with P-BC400 carrier inoculant compared to the control at D2; however, lower enrichment of δ<sup>13</sup>C (37%) and δ<sup>15</sup>N (108%) with highest number of root nodules (8.3 ± 1.26) and nitrogenase activity (0.869 ± 0.04) were observed under D2, as evident through PCA analysis, showing more nitrogen (N) fixation and photosynthetic activity. Overall, this experiment concluded that biochar pyrolyzed at lower temperatures, especially P-BC400, was the most suitable candidate for rhizobial inoculum and promoted soybean growth.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01805-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biochars produced from different feedstocks and at different pyrolysis temperatures may have various chemical and physical properties, affecting their potential use as alternative microbial carrier materials. In this study, biochars were produced from pine wood and oak feedstocks at various temperatures (400°C, 500°C, 600°C, 700°C and 800°C), characterized, and assessed for their potential as carriers for Bradyrhizobium japonicum (CB1809) strain. The biochars were then stored at two different storage temperatures (28°C and 38°C) for up to 90 days. Furthermore, the study also explored the role of potentially ideal carriers as inoculants in the growth of Glycine max L. (soybean) under different moisture levels i.e., 55% water holding capacity (WHC) (D0), 30% WHC (D1) and, 15% WHC (D2) using a mixture of 50% garden soil and 50% sand. The results were compared to a control group (without inoculants) and a peat inoculant. Among all the materials derived from pine wood and oak, pine wood biochar pyrolyzed at 400℃ (P-BC400) exhibited the highest CFU count, with values of 10.34 and 9.74 Log 10 CFU g− 1 after 90 days of storage at 28℃ and 38℃, respectively. This was notably higher compared to other biochars and peat carriers. Significant (p < 0.05) increases in plant properties: shoot and root dry biomass (174% and 367%), shoot and root length (89% and 85%), number of leaves (71%), membrane stability index (27%), relative water content (26%), and total chlorophyll (140%) were observed in plants treated with P-BC400 carrier inoculant compared to the control at D2; however, lower enrichment of δ13C (37%) and δ15N (108%) with highest number of root nodules (8.3 ± 1.26) and nitrogenase activity (0.869 ± 0.04) were observed under D2, as evident through PCA analysis, showing more nitrogen (N) fixation and photosynthetic activity. Overall, this experiment concluded that biochar pyrolyzed at lower temperatures, especially P-BC400, was the most suitable candidate for rhizobial inoculum and promoted soybean growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热解温度影响生物炭作为替代根瘤菌载体的适用性
摘要 由不同原料和不同热解温度生产的生物炭可能具有不同的化学和物理特性,从而影响其作为替代微生物载体材料的潜在用途。本研究以松木和橡木为原料,在不同温度(400°C、500°C、600°C、700°C 和 800°C)下生产出生物炭,对其进行了表征,并评估了其作为日本农杆菌(CB1809)菌株载体的潜力。然后将这些生物脆饼在两种不同的储存温度(28°C 和 38°C)下储存长达 90 天。此外,该研究还探讨了潜在理想载体作为接种剂在不同湿度条件下(即持水率为 55% (WHC) (D0)、30% (WHC) (D1) 和 15% (WHC) (D2),使用 50% 园土和 50% 沙的混合物)对大豆(Glycine max L.)生长的作用。结果与对照组(无接种剂)和泥炭接种剂进行了比较。在所有取自松木和橡木的材料中,400℃热解的松木生物炭(P-BC400)的 CFU 数最高,在 28℃ 和 38℃ 下存放 90 天后,CFU 数分别为 10.34 和 9.74 Log 10 CFU g- 1。这明显高于其他生物炭和泥炭载体。植物特性:嫩枝、叶片和叶柄显著增加(p < 0.05),与 D2 期的对照相比,使用 P-BC400 载体接种剂处理的植株在以下方面都有显著提高:芽和根的干生物量(174% 和 367%)、芽和根的长度(89% 和 85%)、叶片数(71%)、膜稳定性指数(27%)、相对含水量(26%)和总叶绿素(140%);但是,δ13C(37%)和δ15N(108%)的富集度较低,根瘤数最多(8.通过 PCA 分析可明显看出,D2 下的根瘤数(8.3 ± 1.26)和氮酶活性(0.869 ± 0.04)最高,表明固氮作用和光合作用更强。总之,本实验得出结论,在较低温度下热解的生物炭,尤其是 P-BC400 最适合作为根瘤菌接种体,并能促进大豆生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus Solid-state nuclear magnetic resonance at low-field as an approach for fertiliser dissolution monitoring Pre-sowing recurrent inoculation with Pseudomonas fluorescens promotes maize growth Interactive effects of plant litter chemistry and organic/inorganic forms of nitrogen addition on Moso bamboo (Phyllostachys edulis) soil respiration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1