Achieving n-Fold Increase in the Unambiguous Radar Range of a Uniform Pulse Train by Turning Off Every n’th Pulse (for n = 3, 4, 5…)

Nadav Levanon
{"title":"Achieving n-Fold Increase in the Unambiguous Radar Range of a Uniform Pulse Train by Turning Off Every n’th Pulse (for n = 3, 4, 5…)","authors":"Nadav Levanon","doi":"10.1109/TRS.2024.3368188","DOIUrl":null,"url":null,"abstract":"This correspondence addresses the radar challenge of extending the unambiguous delay in a uniform pulse train beyond the pulse repetition interval (PRI). The proposed approach involves dividing the streaming transmitted pulses into consecutive groups, each comprising \n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n pulses. These \n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n transmitted pulses undergo overlay with a coded sequence \n<inline-formula> <tex-math>${\\text{S}}_{n}$ </tex-math></inline-formula>\n (e.g., S3 = {1 1 0}). Concurrently, the corresponding \n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n reference pulses in the receiver undergo overlay with a coded sequence \n<inline-formula> <tex-math>${\\text{R}}_{n}$ </tex-math></inline-formula>\n (e.g., R3 = {\n<inline-formula> <tex-math>$1\\,\\,1-1$ </tex-math></inline-formula>\n}), requiring a sidelobe-free periodic cross-correlation between \n<inline-formula> <tex-math>${\\text{S}}_{n}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${\\text{R}}_{n}$ </tex-math></inline-formula>\n. The initially identical transmitted pulses may be either plain or compressed, and the corresponding reference pulses can be matched or mismatched. This innovative approach extends the unambiguous range by a factor of \n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n. However, it does not address the issue of masked target returns coinciding with detection of the system’s own pulses, when the isolation of own pulses is insufficient and they saturate the receiver. Notably, the proposed approach is applicable to both coherent and non-coherent systems such as Lidar. However, our emphasis here is mainly on non-coherent systems. The presentation includes simple examples with \n<inline-formula> <tex-math>$n$ </tex-math></inline-formula>\n values of 3, 4, and 5, and considers system performances in the presence of noise.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"263-267"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10440642/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This correspondence addresses the radar challenge of extending the unambiguous delay in a uniform pulse train beyond the pulse repetition interval (PRI). The proposed approach involves dividing the streaming transmitted pulses into consecutive groups, each comprising $n$ pulses. These $n$ transmitted pulses undergo overlay with a coded sequence ${\text{S}}_{n}$ (e.g., S3 = {1 1 0}). Concurrently, the corresponding $n$ reference pulses in the receiver undergo overlay with a coded sequence ${\text{R}}_{n}$ (e.g., R3 = { $1\,\,1-1$ }), requiring a sidelobe-free periodic cross-correlation between ${\text{S}}_{n}$ and ${\text{R}}_{n}$ . The initially identical transmitted pulses may be either plain or compressed, and the corresponding reference pulses can be matched or mismatched. This innovative approach extends the unambiguous range by a factor of $n$ . However, it does not address the issue of masked target returns coinciding with detection of the system’s own pulses, when the isolation of own pulses is insufficient and they saturate the receiver. Notably, the proposed approach is applicable to both coherent and non-coherent systems such as Lidar. However, our emphasis here is mainly on non-coherent systems. The presentation includes simple examples with $n$ values of 3, 4, and 5, and considers system performances in the presence of noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过关闭每 n 个脉冲(n = 3、4、5......),使均匀脉冲串的清晰雷达范围增加 n 倍
这篇论文探讨了如何在脉冲重复间隔 (PRI) 以外延长均匀脉冲序列中的明确延迟这一雷达难题。建议的方法是将流传输脉冲分成连续的组,每组包括 $n$ 脉冲。这些 $n$ 发送脉冲与编码序列 ${text{S}}_{n}$ (例如 S3 = {1 1 0})进行叠加。与此同时,接收器中相应的 $n$ 参考脉冲与编码序列 ${text{R}}_{n}$ (例如 R3 = { $1\\,1-1$ })进行叠加,要求 ${\text{S}}_{n}$ 和 ${\text{R}}_{n}$ 之间具有无旁瓣的周期性交叉相关。最初相同的传输脉冲可以是平直的,也可以是压缩的,相应的参考脉冲可以是匹配的,也可以是不匹配的。然而,这种创新方法并没有解决当系统自身脉冲的隔离能力不足,导致接收器饱和时,屏蔽目标返回与系统自身脉冲的检测重合的问题。值得注意的是,所提出的方法既适用于相干系统,也适用于激光雷达等非相干系统。不过,我们在此主要强调非相干系统。介绍中包括一些简单的示例(n$值分别为 3、4 和 5),并考虑了系统在噪声情况下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1