Cobalt Nanoparticles Embedded in Nitrogen-doped Carbon Nanofibers to Enhance Redox Kinetics for Long-Cycling Sodium-Sulfur Batteries

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Materials Today Energy Pub Date : 2024-02-26 DOI:10.1016/j.mtener.2024.101536
Peipei Zhi, Yuruo Qi, Jing Zhao, Haifeng Ding, Qing Zhao, Yi Li, Maowen Xu
{"title":"Cobalt Nanoparticles Embedded in Nitrogen-doped Carbon Nanofibers to Enhance Redox Kinetics for Long-Cycling Sodium-Sulfur Batteries","authors":"Peipei Zhi, Yuruo Qi, Jing Zhao, Haifeng Ding, Qing Zhao, Yi Li, Maowen Xu","doi":"10.1016/j.mtener.2024.101536","DOIUrl":null,"url":null,"abstract":"The shuttle effect resulting from severe volume expansion and polysulfide dissolution imposes limitations to the application of sodium-sulfur (Na-S) batteries. Herein, a three-dimensional self-supported electrode comprised of cobalt nanoparticles embedded in nitrogen-doped carbon nanofibers (CoNCNF) is constructed to accommodate sulfur as cathode for Na-S batteries. The carbon fiber framework facilitates direct electrons transmission and reduces overall contact impedance of electrode. The abundant pore structure not only promotes electrolyte infiltration but also ensures high loading of sulfur, and provides space for volume expansion during charging and discharging. Most significantly, CoNCNF carrier accelerate the conversion rate of sodium polysulfides (NaPSs) into NaS and guide NaS deposition on its surface in a three-dimensional progressive nucleation (3DP) mode, resulting in a high NaS deposition capacity and outstanding long-term cycling performance. When coupled with a Na metal anode, the CoNCNF/S composite cathode exhibits stable electrochemical properties with a capacity up to 1030.2 mA h g after 300 cycles at 0.2C and excellent rate performance.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101536","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The shuttle effect resulting from severe volume expansion and polysulfide dissolution imposes limitations to the application of sodium-sulfur (Na-S) batteries. Herein, a three-dimensional self-supported electrode comprised of cobalt nanoparticles embedded in nitrogen-doped carbon nanofibers (CoNCNF) is constructed to accommodate sulfur as cathode for Na-S batteries. The carbon fiber framework facilitates direct electrons transmission and reduces overall contact impedance of electrode. The abundant pore structure not only promotes electrolyte infiltration but also ensures high loading of sulfur, and provides space for volume expansion during charging and discharging. Most significantly, CoNCNF carrier accelerate the conversion rate of sodium polysulfides (NaPSs) into NaS and guide NaS deposition on its surface in a three-dimensional progressive nucleation (3DP) mode, resulting in a high NaS deposition capacity and outstanding long-term cycling performance. When coupled with a Na metal anode, the CoNCNF/S composite cathode exhibits stable electrochemical properties with a capacity up to 1030.2 mA h g after 300 cycles at 0.2C and excellent rate performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮掺杂碳纳米纤维中嵌入钴纳米颗粒,提高长周期钠硫电池的氧化还原动力学性能
严重的体积膨胀和多硫化物溶解产生的穿梭效应限制了钠硫(Na-S)电池的应用。在此,我们构建了一种由嵌入氮掺杂碳纳米纤维(CoNCNF)的钴纳米颗粒组成的三维自支撑电极,可将硫作为钠硫电池的阴极。碳纤维框架有利于电子直接传输,并降低了电极的整体接触阻抗。丰富的孔隙结构不仅能促进电解质的渗透,还能确保硫的高负载量,并为充放电过程中的体积膨胀提供空间。最重要的是,CoNCNF 载体可加快多硫化钠(NaPSs)转化为 NaS 的速度,并以三维渐进成核(3DP)模式引导 NaS 在其表面沉积,因此具有很高的 NaS 沉积能力和出色的长期循环性能。当与 Na 金属阳极耦合时,CoNCNF/S 复合阴极表现出稳定的电化学特性,在 0.2C 下循环 300 次后,容量可达 1030.2 mA h g,并具有优异的速率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
期刊最新文献
Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays Evolution from passive to active components in lithium metal and lithium-ion batteries separators Prolonging rechargeable aluminum batteries life with flexible ceramic separator Efficient hole transport layers for silicon heterojunction solar cells by surface plasmonic modification in MoOx/Au NPs/MoOx stacks Self-powered sensors utilizing single-pillar thermocells with pyrolytic graphite sheet electrodes: harvesting body heat and solar thermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1