Main performance metrics of thermophotovoltaic devices: analyzing the state of the art

IF 1.5 4区 工程技术 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Photonics for Energy Pub Date : 2024-02-01 DOI:10.1117/1.jpe.14.042403
Basile Roux, Christophe Lucchesi, Jean-Philippe Perez, Pierre-Olivier Chapuis, Rodolphe Vaillon
{"title":"Main performance metrics of thermophotovoltaic devices: analyzing the state of the art","authors":"Basile Roux, Christophe Lucchesi, Jean-Philippe Perez, Pierre-Olivier Chapuis, Rodolphe Vaillon","doi":"10.1117/1.jpe.14.042403","DOIUrl":null,"url":null,"abstract":"Thermophotovoltaics (TPVs) differs from solar photovoltaics (PV) because pairwise efficiency and electrical power cannot be optimized simultaneously, as a consequence of spectral selectivity or photon recycling. A review of around thirty experiments conducted so far is carried out, and the achieved performances are compared with those obtained in the detailed balance limit. The link between optimal cell bandgap and emitter temperature is highlighted as a function of out-of-band radiation exchange between the emitter and the cell. The analysis reveals that almost all the experimental data reported are far from power-maximizing conditions and more focused on optimizing efficiency. At high temperature, thermal management is obviously an issue and optimizing efficiency is required to minimize heat generation. In general, it is argued that in addition to pairwise efficiency and electrical power density, heat power density is a third metric that should be considered in the design of TPV devices.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jpe.14.042403","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermophotovoltaics (TPVs) differs from solar photovoltaics (PV) because pairwise efficiency and electrical power cannot be optimized simultaneously, as a consequence of spectral selectivity or photon recycling. A review of around thirty experiments conducted so far is carried out, and the achieved performances are compared with those obtained in the detailed balance limit. The link between optimal cell bandgap and emitter temperature is highlighted as a function of out-of-band radiation exchange between the emitter and the cell. The analysis reveals that almost all the experimental data reported are far from power-maximizing conditions and more focused on optimizing efficiency. At high temperature, thermal management is obviously an issue and optimizing efficiency is required to minimize heat generation. In general, it is argued that in addition to pairwise efficiency and electrical power density, heat power density is a third metric that should be considered in the design of TPV devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热光电设备的主要性能指标:技术现状分析
热光电技术(TPV)不同于太阳能光伏技术(PV),因为光谱选择性或光子再循环的结果,无法同时优化成对效率和电功率。本文回顾了迄今为止进行的约三十次实验,并将取得的性能与在详细平衡极限下获得的性能进行了比较。作为发射器和电池之间带外辐射交换的函数,强调了最佳电池带隙和发射器温度之间的联系。分析表明,几乎所有报告的实验数据都远离功率最大化条件,而更侧重于优化效率。在高温条件下,热管理显然是一个问题,需要优化效率以尽量减少发热。总体而言,除了成对效率和电功率密度,热功率密度是冠捷器件设计中应考虑的第三个指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Photonics for Energy
Journal of Photonics for Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
3.20
自引率
5.90%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.
期刊最新文献
Techno-economic analysis of a solar thermophotovoltaic system for a residential building Optimization of rear surface morphology for industrial tunnel oxide passivated contact solar cells Enhanced photon collection in leaf-inspired luminescent solar concentrators Simulation of solar-pumped multicore Nd3+-doped silica fiber lasers Enhancing solar laser performance through multirod configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1