Thermophotovoltaics (TPV) is a technology that converts heat to electricity using a thermal emitter and a matched photovoltaic (PV) cell. TPV is becoming increasingly popular due to its advantages of silent power generation, higher power density (>2.5 W/cm2), reduced cost, no moving parts (thus, low maintenance costs), reaching full power in less time as compared to turbines, operating at high temperatures, and suitability for long-duration energy storage applications. This study conducts a techno-economic analysis (TEA) of a solar energy conversion (using TPV) and storage system (using phase-change materials). We optimize the levelized cost of consumed energy (LCOE) and electricity (LCOEel) using the Nelder-Mead algorithm for four scenarios (as identified in the reference study). These scenarios differ in nominal-weighted average cost of capital (WACCnom), fuel and electricity inflation rate, and capital cost factor (CAPEX) of high-temperature energy storage (HTES), power generation unit (PGU), and PV systems. We perform a sensitivity analysis that predicts a modest decrease in LCOE and LCOEel from the mean values of $0.038/kWh and $0.128/kWh, respectively. We perform a Monte Carlo uncertainty assessment and fit a probability distribution based on input variables’ historical data from the literature. The fitted probability distribution for outputs (mean, the standard deviation in brackets) is LCOE ($/kWh)—general extreme value (0.035, 0.009), and LCOEel ($/kWh)—t (0.132, 0.016). The reduced mean values for the optimized system indicate a massive potential for TPV to be economically feasible; however, the LCOEel is higher than the current average electricity price of $0.124/kWh. The box plot shows that lifetime, PV CAPEX, inflation rate, natural gas price, and WACCnom significantly impact LCOE, and future research focused on them would lead to a better adoption of TPV technology.
{"title":"Techno-economic analysis of a solar thermophotovoltaic system for a residential building","authors":"Manish Mosalpuri, Fatima Toor, Mark Mba-Wright","doi":"10.1117/1.jpe.14.042404","DOIUrl":"https://doi.org/10.1117/1.jpe.14.042404","url":null,"abstract":"Thermophotovoltaics (TPV) is a technology that converts heat to electricity using a thermal emitter and a matched photovoltaic (PV) cell. TPV is becoming increasingly popular due to its advantages of silent power generation, higher power density (>2.5 W/cm2), reduced cost, no moving parts (thus, low maintenance costs), reaching full power in less time as compared to turbines, operating at high temperatures, and suitability for long-duration energy storage applications. This study conducts a techno-economic analysis (TEA) of a solar energy conversion (using TPV) and storage system (using phase-change materials). We optimize the levelized cost of consumed energy (LCOE) and electricity (LCOEel) using the Nelder-Mead algorithm for four scenarios (as identified in the reference study). These scenarios differ in nominal-weighted average cost of capital (WACCnom), fuel and electricity inflation rate, and capital cost factor (CAPEX) of high-temperature energy storage (HTES), power generation unit (PGU), and PV systems. We perform a sensitivity analysis that predicts a modest decrease in LCOE and LCOEel from the mean values of $0.038/kWh and $0.128/kWh, respectively. We perform a Monte Carlo uncertainty assessment and fit a probability distribution based on input variables’ historical data from the literature. The fitted probability distribution for outputs (mean, the standard deviation in brackets) is LCOE ($/kWh)—general extreme value (0.035, 0.009), and LCOEel ($/kWh)—t (0.132, 0.016). The reduced mean values for the optimized system indicate a massive potential for TPV to be economically feasible; however, the LCOEel is higher than the current average electricity price of $0.124/kWh. The box plot shows that lifetime, PV CAPEX, inflation rate, natural gas price, and WACCnom significantly impact LCOE, and future research focused on them would lead to a better adoption of TPV technology.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"30 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study reports experimental test results on a solar-pumped laser that utilizes composite YAG/Ce:Nd:YAG/YAG/rod with a diameter of 3 mm. We measured an output power of 8.5 W with optical-to-optical conversion efficiency of 1.43% in multimode operation when the laser was exposed to an incoming solar power of 593 W at an irradiance of 900 W/m2. The YAG/Ce:Nd:YAG/YAG composite laser rod withstood the severe conditions of solar end-pumping for several hours of testing without any negative effects or degradation of laser output over time. To interpret and comprehensively analyze the experimental results, we developed a simulation model based on our experimental setup and conducted calculations with taking into account thermal population of lower laser levels. Simulation calculations show that a small deviation from a straight line in the experimental input–output dependence is a consequence of the weak influence of thermal population of the lower laser levels. To compare with recent achievements with conventional laser rods of comparable sizes and to formulate some useful recommendations when using composite crystals in future studies, we carried out additional numerical experiments taking into account possible optimizations, which do not affect in any way the thermal load on the front part of the laser rod considered in this experiment. The numerical studies demonstrate that solar-to-laser power conversion efficiency of 4.0% is achievable with a 3 mm laser rod when the solar input power is about 600 W. We also discuss the influence of rod size and thermal effects on conversion efficiency. Based on the findings of this study, we conclude that employing laser media composed of a single or multirod system with a composite structure could potentially offer an optimal solution to the thermal challenges inherent in solar-pumped solid-state lasers.
{"title":"Solar-pumped composite YAG/Ce:Nd:YAG/YAG laser with reduced thermal effects","authors":"Shermakhamat Payziyev, Anavrjon Sherniyozov, Sagdilla Bakhramov, Odilkhuja Parpiev, Shavkat Nurmatov, Gayrat Khalikov, Dilaram Payziyeva, Sherzod Begimqulov, Fayoziddin Kamoliddinov, Akmal Aliboyev, Abdulla Qakhkhorov, Feruza Shermatova","doi":"10.1117/1.jpe.14.014501","DOIUrl":"https://doi.org/10.1117/1.jpe.14.014501","url":null,"abstract":"This study reports experimental test results on a solar-pumped laser that utilizes composite YAG/Ce:Nd:YAG/YAG/rod with a diameter of 3 mm. We measured an output power of 8.5 W with optical-to-optical conversion efficiency of 1.43% in multimode operation when the laser was exposed to an incoming solar power of 593 W at an irradiance of 900 W/m2. The YAG/Ce:Nd:YAG/YAG composite laser rod withstood the severe conditions of solar end-pumping for several hours of testing without any negative effects or degradation of laser output over time. To interpret and comprehensively analyze the experimental results, we developed a simulation model based on our experimental setup and conducted calculations with taking into account thermal population of lower laser levels. Simulation calculations show that a small deviation from a straight line in the experimental input–output dependence is a consequence of the weak influence of thermal population of the lower laser levels. To compare with recent achievements with conventional laser rods of comparable sizes and to formulate some useful recommendations when using composite crystals in future studies, we carried out additional numerical experiments taking into account possible optimizations, which do not affect in any way the thermal load on the front part of the laser rod considered in this experiment. The numerical studies demonstrate that solar-to-laser power conversion efficiency of 4.0% is achievable with a 3 mm laser rod when the solar input power is about 600 W. We also discuss the influence of rod size and thermal effects on conversion efficiency. Based on the findings of this study, we conclude that employing laser media composed of a single or multirod system with a composite structure could potentially offer an optimal solution to the thermal challenges inherent in solar-pumped solid-state lasers.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"4 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maxime Giteau, Michela F. Picardi, Georgia T. Papadakis
Comparing the performance of thermophotovoltaic (TPV) devices is challenging due to a lack of standard operation conditions. Here, we propose a universal figure of merit (FOM) that can be used to evaluate the performance of TPV devices that operate in the far-field regime relative to their thermodynamic bounds. The introduced FOM alleviates temperature dependence and accounts for the fundamental trade-off between power density and efficiency. Based on this FOM, we present a classification of TPV performances reported in recent experiments.
{"title":"Thermodynamic figure of merit for thermophotovoltaics","authors":"Maxime Giteau, Michela F. Picardi, Georgia T. Papadakis","doi":"10.1117/1.jpe.14.042402","DOIUrl":"https://doi.org/10.1117/1.jpe.14.042402","url":null,"abstract":"Comparing the performance of thermophotovoltaic (TPV) devices is challenging due to a lack of standard operation conditions. Here, we propose a universal figure of merit (FOM) that can be used to evaluate the performance of TPV devices that operate in the far-field regime relative to their thermodynamic bounds. The introduced FOM alleviates temperature dependence and accounts for the fundamental trade-off between power density and efficiency. Based on this FOM, we present a classification of TPV performances reported in recent experiments.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"162 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thermophotovoltaics (TPVs) differs from solar photovoltaics (PV) because pairwise efficiency and electrical power cannot be optimized simultaneously, as a consequence of spectral selectivity or photon recycling. A review of around thirty experiments conducted so far is carried out, and the achieved performances are compared with those obtained in the detailed balance limit. The link between optimal cell bandgap and emitter temperature is highlighted as a function of out-of-band radiation exchange between the emitter and the cell. The analysis reveals that almost all the experimental data reported are far from power-maximizing conditions and more focused on optimizing efficiency. At high temperature, thermal management is obviously an issue and optimizing efficiency is required to minimize heat generation. In general, it is argued that in addition to pairwise efficiency and electrical power density, heat power density is a third metric that should be considered in the design of TPV devices.
{"title":"Main performance metrics of thermophotovoltaic devices: analyzing the state of the art","authors":"Basile Roux, Christophe Lucchesi, Jean-Philippe Perez, Pierre-Olivier Chapuis, Rodolphe Vaillon","doi":"10.1117/1.jpe.14.042403","DOIUrl":"https://doi.org/10.1117/1.jpe.14.042403","url":null,"abstract":"Thermophotovoltaics (TPVs) differs from solar photovoltaics (PV) because pairwise efficiency and electrical power cannot be optimized simultaneously, as a consequence of spectral selectivity or photon recycling. A review of around thirty experiments conducted so far is carried out, and the achieved performances are compared with those obtained in the detailed balance limit. The link between optimal cell bandgap and emitter temperature is highlighted as a function of out-of-band radiation exchange between the emitter and the cell. The analysis reveals that almost all the experimental data reported are far from power-maximizing conditions and more focused on optimizing efficiency. At high temperature, thermal management is obviously an issue and optimizing efficiency is required to minimize heat generation. In general, it is argued that in addition to pairwise efficiency and electrical power density, heat power density is a third metric that should be considered in the design of TPV devices.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"45 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140006052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaishnavi Thakur, Bernice Mae Yu Jeco-Espaldon, Yoshitaka Okada
The luminescent coupling (LC) effect is one of the strategies for further boosting the efficiency of multijunction solar cells by improving the current mismatch among subcells. This work examined the LC effect in III–V compound InGaP/GaAs/InGaAs inverted metamorphic triple-junction solar cell (IMM-3JSC) by the laser beam-induced current mapping characterization method. A strong LC effect in the bottom subcell of the IMM-3J sample was demonstrated with an LC yield of around 0.13 under 7 suns irradiance. In addition, by effectively homogenizing the LC effect, the bottom subcell of IMM-3JSCs may potentially gain a current density of ∼0.6 mA/cm2 at 10 suns irradiance.
{"title":"Luminescent coupling effect in InGaP/GaAs/InGaAs inverted metamorphic triple-junction solar cell","authors":"Vaishnavi Thakur, Bernice Mae Yu Jeco-Espaldon, Yoshitaka Okada","doi":"10.1117/1.jpe.14.015503","DOIUrl":"https://doi.org/10.1117/1.jpe.14.015503","url":null,"abstract":"The luminescent coupling (LC) effect is one of the strategies for further boosting the efficiency of multijunction solar cells by improving the current mismatch among subcells. This work examined the LC effect in III–V compound InGaP/GaAs/InGaAs inverted metamorphic triple-junction solar cell (IMM-3JSC) by the laser beam-induced current mapping characterization method. A strong LC effect in the bottom subcell of the IMM-3J sample was demonstrated with an LC yield of around 0.13 under 7 suns irradiance. In addition, by effectively homogenizing the LC effect, the bottom subcell of IMM-3JSCs may potentially gain a current density of ∼0.6 mA/cm2 at 10 suns irradiance.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"67 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annick Anctil, Meghan N. Beattie, Christopher Case, Aditya Chaudhary, Benjamin D. Chrysler, Michael G. Debije, Stephanie Essig, David K. Ferry, Vivian E. Ferry, Marina Freitag, Isaac Gould, Karin Hinzer, Harald Hoppe, Olle Inganäs, Lethy Krishnan Jagadamma, Min Hun Jee, Raymond K. Kostuk, Daniel Kirk, Stephan Kube, Minyoung Lim, Joseph M. Luther, Lorelle Mansfield, Michael D. McGehee, Duong Nguyen Minh, Preeti Nain, Matthew O. Reese, Angèle Reinders, Ifor D. W. Samuel, Wilfried van Sark, Hele Savin, Ian R. Sellers, Sean E. Shaheen, Zheng Tang, Fatima Toor, Ville Vähänissi, Ella Wassweiler, Emily L. Warren, Vincent R. Whiteside, Han Young Woo, Gang Xiong, Xitong Zhu
This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV.
{"title":"Status report on emerging photovoltaics","authors":"Annick Anctil, Meghan N. Beattie, Christopher Case, Aditya Chaudhary, Benjamin D. Chrysler, Michael G. Debije, Stephanie Essig, David K. Ferry, Vivian E. Ferry, Marina Freitag, Isaac Gould, Karin Hinzer, Harald Hoppe, Olle Inganäs, Lethy Krishnan Jagadamma, Min Hun Jee, Raymond K. Kostuk, Daniel Kirk, Stephan Kube, Minyoung Lim, Joseph M. Luther, Lorelle Mansfield, Michael D. McGehee, Duong Nguyen Minh, Preeti Nain, Matthew O. Reese, Angèle Reinders, Ifor D. W. Samuel, Wilfried van Sark, Hele Savin, Ian R. Sellers, Sean E. Shaheen, Zheng Tang, Fatima Toor, Ville Vähänissi, Ella Wassweiler, Emily L. Warren, Vincent R. Whiteside, Han Young Woo, Gang Xiong, Xitong Zhu","doi":"10.1117/1.jpe.13.042301","DOIUrl":"https://doi.org/10.1117/1.jpe.13.042301","url":null,"abstract":"This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"31 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Editor-in-Chief Sean Shaheen summarizes the state of photovoltaics.
主编 Sean Shaheen 总结了光伏技术的发展状况。
{"title":"Special Section Guest Editorial: The Continuing Emergence of Photovoltaics","authors":"Sean Shaheen","doi":"10.1117/1.jpe.13.040101","DOIUrl":"https://doi.org/10.1117/1.jpe.13.040101","url":null,"abstract":"Editor-in-Chief Sean Shaheen summarizes the state of photovoltaics.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"31 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Realizing an excellent spectral response by utilizing the ultraviolet parts of solar radiation is an important focus for enhancing the performance of photovoltaic cells (PCs). Pr3+ and Eu3+ ions co-doped multifunctional transparent GdPO4 glass-ceramic is successfully prepared using a conventional melting quenching technique. In GdPO4: Pr3+-Eu3+, ultraviolet to visible downshifting is realized via the remarkable energy transfer from Pr3+ to Eu3+ ions by bridge Gd3+ ions. Introducing the spectral conversion material by converting ultra-violet photons into visible photons is considered a very promising route; it can be applied to perovskite PCs by reducing the photo-degradation and enhancing the light harvesting, and it can be applied to hydrogenated amorphous-silicon carbide PCs by reducing the solar energy losses associated with spectral mismatch of the spectral response and energy. The development of downshifting Pr3+-Eu3+ co-doped glass-ceramics might open up a new approach to achieving a better performance of photovoltaic devices.
{"title":"Ultraviolet-wavelength driven solar spectral converter for photovoltaic cell application","authors":"Pei Song, Chaomin Zhang, Pengfei Zhu","doi":"10.1117/1.jpe.14.015501","DOIUrl":"https://doi.org/10.1117/1.jpe.14.015501","url":null,"abstract":"Realizing an excellent spectral response by utilizing the ultraviolet parts of solar radiation is an important focus for enhancing the performance of photovoltaic cells (PCs). Pr3+ and Eu3+ ions co-doped multifunctional transparent GdPO4 glass-ceramic is successfully prepared using a conventional melting quenching technique. In GdPO4: Pr3+-Eu3+, ultraviolet to visible downshifting is realized via the remarkable energy transfer from Pr3+ to Eu3+ ions by bridge Gd3+ ions. Introducing the spectral conversion material by converting ultra-violet photons into visible photons is considered a very promising route; it can be applied to perovskite PCs by reducing the photo-degradation and enhancing the light harvesting, and it can be applied to hydrogenated amorphous-silicon carbide PCs by reducing the solar energy losses associated with spectral mismatch of the spectral response and energy. The development of downshifting Pr3+-Eu3+ co-doped glass-ceramics might open up a new approach to achieving a better performance of photovoltaic devices.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"3 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Semitransparent solar cells (ST-SCs) have emerged as a prominent energy harvesting technology that combines the benefits of transparency and light-to-electricity conversion. The biggest opportunities for ST-SCs lie in their integration as windows and skylights within energy-sustainable buildings or combining them with other solar cell technologies in tandem configuration. The performance of ST-SCs is mainly determined by the trade-off between the competing parameters of the capability to convert the light-to-electricity while allowing some part of it to pass through imparting transparency. Depending on the target application, the selection of ST-SCs is a tricky affair as some devices might offer high efficiency but compromise transparency and vice versa. In addition, this is again not helped by the fact that due to advancements in materials engineering, processing, and characterization, vastly different combinations of efficiency and transparency have been reported. So to quantify the performance of ST-SCs, we attempted and developed a figure-of-merit (FoM), which can be used as a tool that can help in analyzing and comparing the performance among various ST-SCs. The defined FoM focuses on the efficiency of the device, bifaciality factor, transmittance in the desired region, and that corresponding to 550 nm wavelength. Additionally, we have been shown how the proposed FoM can be correlated for tandem and building-integrated photovoltaics applications. Based on these resultant parameters, FoM is calculated and compared for different device architectures available in the literature. The proposed FoM shall serve as a meaningful guiding path to the researchers for the development of advanced ST-SCs.
{"title":"Figure-of-merit for assessment of semitransparent solar cells","authors":"Arun Kumar, Sonia Rani, Dhriti Sundar Ghosh","doi":"10.1117/1.jpe.14.015502","DOIUrl":"https://doi.org/10.1117/1.jpe.14.015502","url":null,"abstract":"Semitransparent solar cells (ST-SCs) have emerged as a prominent energy harvesting technology that combines the benefits of transparency and light-to-electricity conversion. The biggest opportunities for ST-SCs lie in their integration as windows and skylights within energy-sustainable buildings or combining them with other solar cell technologies in tandem configuration. The performance of ST-SCs is mainly determined by the trade-off between the competing parameters of the capability to convert the light-to-electricity while allowing some part of it to pass through imparting transparency. Depending on the target application, the selection of ST-SCs is a tricky affair as some devices might offer high efficiency but compromise transparency and vice versa. In addition, this is again not helped by the fact that due to advancements in materials engineering, processing, and characterization, vastly different combinations of efficiency and transparency have been reported. So to quantify the performance of ST-SCs, we attempted and developed a figure-of-merit (FoM), which can be used as a tool that can help in analyzing and comparing the performance among various ST-SCs. The defined FoM focuses on the efficiency of the device, bifaciality factor, transmittance in the desired region, and that corresponding to 550 nm wavelength. Additionally, we have been shown how the proposed FoM can be correlated for tandem and building-integrated photovoltaics applications. Based on these resultant parameters, FoM is calculated and compared for different device architectures available in the literature. The proposed FoM shall serve as a meaningful guiding path to the researchers for the development of advanced ST-SCs.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"3 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hugo Costa, Dawei Liang, Joana Almeida, Miguel Catela, Dário Garcia, Bruno D. Tibúrcio, Cláudia R. Vistas
Improving the TEM00-mode laser efficiency is one of the main goals in solar laser research, motivated by the significant importance these high-quality beams hold for fields, such as materials processing. A seven-rod concept was designed to enhance the TEM00-mode solar laser efficiency through the adoption of Ce:Nd:YAG active media. Collection and concentration of solar rays were conducted by seven Fresnel lenses, assisted by six folding mirrors. The laser head was composed of seven aspheric lenses, a hexagonal window and seven grooved Ce:Nd:YAG rods, which were end-side-pumped. A total TEM00-mode laser power of 172.59 W was numerically achieved, corresponding to a 34.52 W / m2 collection efficiency and a 3.63% solar-to-laser power conversion efficiency. These efficiency values were 1.51 and 1.59 times higher than those from the previous numerical study that also involved the usage of a grooved Ce:Nd:YAG rod. A laser beam merging scheme is also presented, enabling the extraction of a single TEM00-mode laser beam from the seven rods. A TEM00-mode laser power of 207.55 W was attained, corresponding to collection and solar-to-laser power conversion efficiencies of 41.51 W / m2 and 4.37%, respectively.
提高tem00模式激光效率是太阳能激光研究的主要目标之一,这是因为这些高质量光束在材料加工等领域具有重要意义。设计了一个七杆概念,通过采用Ce:Nd:YAG有源介质来提高tem00模式太阳能激光器的效率。太阳光线的收集和集中由7个菲涅耳透镜和6个折叠镜辅助进行。激光头由7个非球面透镜、一个六角形窗口和7根端侧泵浦的凹槽Ce:Nd:YAG棒组成。在数值上实现了tem00模式的总激光功率为172.59 W,对应于34.52 W / m2的收集效率和3.63%的太阳能-激光功率转换效率。这些效率值比之前的数值研究高出1.51和1.59倍,这些数值研究也涉及使用凹槽Ce:Nd:YAG棒。提出了一种激光光束合并方案,实现了从七个棒中提取单个tem00模式激光束。获得了207.55 W的tem00模式激光功率,对应的收集和太阳能-激光功率转换效率分别为41.51 W / m2和4.37%。
{"title":"Seven-grooved-Ce:Nd:YAG-rod solar laser pumping approach with 34.5 W/m2 TEM00-mode collection efficiency","authors":"Hugo Costa, Dawei Liang, Joana Almeida, Miguel Catela, Dário Garcia, Bruno D. Tibúrcio, Cláudia R. Vistas","doi":"10.1117/1.jpe.13.048001","DOIUrl":"https://doi.org/10.1117/1.jpe.13.048001","url":null,"abstract":"Improving the TEM00-mode laser efficiency is one of the main goals in solar laser research, motivated by the significant importance these high-quality beams hold for fields, such as materials processing. A seven-rod concept was designed to enhance the TEM00-mode solar laser efficiency through the adoption of Ce:Nd:YAG active media. Collection and concentration of solar rays were conducted by seven Fresnel lenses, assisted by six folding mirrors. The laser head was composed of seven aspheric lenses, a hexagonal window and seven grooved Ce:Nd:YAG rods, which were end-side-pumped. A total TEM00-mode laser power of 172.59 W was numerically achieved, corresponding to a 34.52 W / m2 collection efficiency and a 3.63% solar-to-laser power conversion efficiency. These efficiency values were 1.51 and 1.59 times higher than those from the previous numerical study that also involved the usage of a grooved Ce:Nd:YAG rod. A laser beam merging scheme is also presented, enabling the extraction of a single TEM00-mode laser beam from the seven rods. A TEM00-mode laser power of 207.55 W was attained, corresponding to collection and solar-to-laser power conversion efficiencies of 41.51 W / m2 and 4.37%, respectively.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"65 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138496706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}