Turning natural copper phthalocyanine into high-loading single-atom catalysts using an electrochemically-generated template and cationic substitution

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2024-03-01 DOI:10.1016/j.mtnano.2024.100466
Chia-Yu Chang , Wei-Hsiang Huang , Meng-Che Tsai , Chih-Wen Pao , Jeng-Lung Chen , Masato Yoshimura , Nozomu Hiraoka , Chi-Liang Chen , Bing Joe Hwang , Wei-Nien Su
{"title":"Turning natural copper phthalocyanine into high-loading single-atom catalysts using an electrochemically-generated template and cationic substitution","authors":"Chia-Yu Chang ,&nbsp;Wei-Hsiang Huang ,&nbsp;Meng-Che Tsai ,&nbsp;Chih-Wen Pao ,&nbsp;Jeng-Lung Chen ,&nbsp;Masato Yoshimura ,&nbsp;Nozomu Hiraoka ,&nbsp;Chi-Liang Chen ,&nbsp;Bing Joe Hwang ,&nbsp;Wei-Nien Su","doi":"10.1016/j.mtnano.2024.100466","DOIUrl":null,"url":null,"abstract":"<div><p>Phthalocyanine (PC) has a unique N<sub>4</sub>-coordinated structure that offers an inherent advantage with respect to the accommodation of metal ions. This feature can help overcome the limitations of many single-atom electrocatalysts, <em>i.e</em>. low loading and poor stability. Here, we detail the development of a universal electrochemical template and a cationic substitution synthesis protocol for preparing various single-atom catalysts with high-loading (≌ 8.6 wt%) from commercial copper phthalocyanine (CuPC). Commercial CuPC is transformed into Cu NPs and vacant N<sub>4</sub>-sites are created during applied potential cycling. The generated vacant N<sub>4</sub>-sites, with strong negative charges, can take-up Pd<sup>2+</sup> ions from a precursor solution to create single-atom catalysts with Pd high-loadings. The material’s structural transformation and cationic substitution mechanism were investigated by <em>in situ</em> X-ray absorption spectroscopy (XAS). We also demonstrate the viability of extending the proposed electrochemical template synthesis method to the development of other high-loading transition metal single-atom catalysts, <em>e.g</em>., Ni, Co, and Fe.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100466"},"PeriodicalIF":8.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000166","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phthalocyanine (PC) has a unique N4-coordinated structure that offers an inherent advantage with respect to the accommodation of metal ions. This feature can help overcome the limitations of many single-atom electrocatalysts, i.e. low loading and poor stability. Here, we detail the development of a universal electrochemical template and a cationic substitution synthesis protocol for preparing various single-atom catalysts with high-loading (≌ 8.6 wt%) from commercial copper phthalocyanine (CuPC). Commercial CuPC is transformed into Cu NPs and vacant N4-sites are created during applied potential cycling. The generated vacant N4-sites, with strong negative charges, can take-up Pd2+ ions from a precursor solution to create single-atom catalysts with Pd high-loadings. The material’s structural transformation and cationic substitution mechanism were investigated by in situ X-ray absorption spectroscopy (XAS). We also demonstrate the viability of extending the proposed electrochemical template synthesis method to the development of other high-loading transition metal single-atom catalysts, e.g., Ni, Co, and Fe.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电化学生成的模板和阳离子取代将天然铜酞菁转化为高负荷单原子催化剂
酞菁(PC)具有独特的 N 配位结构,在容纳金属离子方面具有先天优势。这一特点有助于克服许多单原子电催化剂的局限性,如负载低、稳定性差等。在此,我们详细介绍了通用电化学模板和阳离子置换合成方案的开发情况,该方案用于从商用铜酞菁(CuPC)制备各种高负载(≌8.6 wt%)的单原子催化剂。商用 CuPC 转化为 Cu NPs,并在外加电位循环过程中产生空位 N-位点。生成的空位 N-位点带有强负电荷,可以从前驱体溶液中吸收钯离子,从而产生高钯负载的单原子催化剂。我们通过 X 射线吸收光谱 (XAS) 研究了该材料的结构转变和阳离子取代机制。我们还证明了将所提出的电化学模板合成方法扩展到开发其他高负载过渡金属单原子催化剂(.、镍、钴和铁)的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Hierarchical MnO2 nanosheets decorated on hollow co/N-doped carbon toward superior electromagnetic wave absorption Study on grain size dependence of shape memory effect in nanocrystalline NiTi shape memory alloys with grain size below 20 nm based on molecular dynamics simulation Flexible ultrabroadband near-perfect absorber enabled by synergistic effects of cavity mode overlap and broadband anti-reflection Scalable mechanical exfoliation of two-dimensional nanosheets by polymer-assisted dry ball-mill of layered materials and insights from machine learning A novel flexible non-enzymatic composite-metal glucose detection sensor in sweat based on platinum in situ plating of liquid metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1