Transparent vertical nanotube electrode arrays on graphene for cellular recording and optical imaging

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2024-03-01 DOI:10.1038/s41427-024-00532-0
Jamin Lee, Keundong Lee, Kyumeen Kang, Asad Ali, Dong Wook Kim, Hyerim Ahn, Gwanho Ko, Myunghwan Choi, Youngbin Tchoe, Hye Yoon Park, Gyu-Chul Yi
{"title":"Transparent vertical nanotube electrode arrays on graphene for cellular recording and optical imaging","authors":"Jamin Lee, Keundong Lee, Kyumeen Kang, Asad Ali, Dong Wook Kim, Hyerim Ahn, Gwanho Ko, Myunghwan Choi, Youngbin Tchoe, Hye Yoon Park, Gyu-Chul Yi","doi":"10.1038/s41427-024-00532-0","DOIUrl":null,"url":null,"abstract":"<p>Here, we report the fabrication of transparent multichannel vertical nanotube electrode arrays for detecting cellular activity and optically imaging neuronal networks. To fabricate these transparent electrode arrays, position- and morphology-controlled ZnO nanotube arrays consisting of ultrathin nanowalls were grown on transparent graphene layers and coated with Ti/Au metal layers. Using these multichannel arrays, electrophysiological signals were individually recorded from primary mouse hippocampal neurons and recorded distinctive intracellular potential-like signals. Moreover, the transparent electrode array enabled fluorescence imaging of neuron cell bodies and neurite connections. This transparent graphene- and nanotube-based recording device is proposed to greatly increase the versatility of capabilities for investigating neuronal activity through simultaneous recording and imaging of neuron cultures.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"2 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41427-024-00532-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we report the fabrication of transparent multichannel vertical nanotube electrode arrays for detecting cellular activity and optically imaging neuronal networks. To fabricate these transparent electrode arrays, position- and morphology-controlled ZnO nanotube arrays consisting of ultrathin nanowalls were grown on transparent graphene layers and coated with Ti/Au metal layers. Using these multichannel arrays, electrophysiological signals were individually recorded from primary mouse hippocampal neurons and recorded distinctive intracellular potential-like signals. Moreover, the transparent electrode array enabled fluorescence imaging of neuron cell bodies and neurite connections. This transparent graphene- and nanotube-based recording device is proposed to greatly increase the versatility of capabilities for investigating neuronal activity through simultaneous recording and imaging of neuron cultures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于细胞记录和光学成像的石墨烯透明垂直纳米管电极阵列
在此,我们报告了透明多通道垂直纳米管电极阵列的制作过程,该阵列可用于检测细胞活动和对神经元网络进行光学成像。为了制作这些透明电极阵列,我们在透明石墨烯层上生长了由超薄纳米壁组成的位置和形态可控的氧化锌纳米管阵列,并在其表面镀上了钛/金金属层。利用这些多通道阵列,可单独记录原代小鼠海马神经元的电生理信号,并记录到独特的类细胞内电位信号。此外,透明电极阵列还能对神经元细胞体和神经元连接进行荧光成像。这种基于石墨烯和纳米管的透明记录装置通过同时记录和成像神经元培养物,大大提高了研究神经元活动的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Unprecedented mechanical wave energy absorption observed in multifunctional bioinspired architected metamaterials Vortex confinement through an unquantized magnetic flux Lithium-ion battery recycling—a review of the material supply and policy infrastructure Tailoring the grain boundary structure and chemistry of the dendrite-free garnet solid electrolyte Li6.1Ga0.3La3Zr2O12 High tolerance of the superconducting current to large grain boundary angles in potassium-doped BaFe2As2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1