Exploring the Potential of Green Microalgae-Based Phycoremediation Treated Wastewater for Sustainable Concrete Production

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Civil Engineering Pub Date : 2024-02-28 DOI:10.1155/2024/8564202
T. Q. K. Lam, K. S. Sreekeshava, C. Bhargavi, C. R. Ganesh, N. S. Ambale, T. M. D. Do
{"title":"Exploring the Potential of Green Microalgae-Based Phycoremediation Treated Wastewater for Sustainable Concrete Production","authors":"T. Q. K. Lam, K. S. Sreekeshava, C. Bhargavi, C. R. Ganesh, N. S. Ambale, T. M. D. Do","doi":"10.1155/2024/8564202","DOIUrl":null,"url":null,"abstract":"Wastewater pollution from domestic, industrial, and agricultural sources threatens the environment and human health. Traditional wastewater treatment methods are energy intensive, generate significant sludge, and may not remove all contaminants. This study explores the use of microalgae, <i>Chlorella sorokinianana</i>, to treat wastewater and evaluates its impact on concrete properties. The research aims to optimize microalgae growth conditions, set up nutrient-rich growth chambers, develop biomass separation methods, and assess the effects of microalgae-treated wastewater on concrete. Scanning electron microscopy (SEM) was used to analyze concrete structures produced with microalgae-treated wastewater, freshwater, and sewage treatment plant (STP) water. Concrete from microalgae-treated wastewater exhibited euhedral crystals with pronounced gaps, while freshwater concrete had denser subhedral to anhedral crystals. STP water concrete consistently had lower strength values, possibly due to impurities affecting cement hydration. Microalgae-treated water concrete showed intermediate strength levels, suggesting organic or biological factors may influence hydration, but it still gained strength with time. This study underscores the potential of microalgae-treated wastewater for sustainable concrete production, highlighting the importance of further research to optimize conditions and promote environmentally friendly construction practices.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"30 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8564202","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater pollution from domestic, industrial, and agricultural sources threatens the environment and human health. Traditional wastewater treatment methods are energy intensive, generate significant sludge, and may not remove all contaminants. This study explores the use of microalgae, Chlorella sorokinianana, to treat wastewater and evaluates its impact on concrete properties. The research aims to optimize microalgae growth conditions, set up nutrient-rich growth chambers, develop biomass separation methods, and assess the effects of microalgae-treated wastewater on concrete. Scanning electron microscopy (SEM) was used to analyze concrete structures produced with microalgae-treated wastewater, freshwater, and sewage treatment plant (STP) water. Concrete from microalgae-treated wastewater exhibited euhedral crystals with pronounced gaps, while freshwater concrete had denser subhedral to anhedral crystals. STP water concrete consistently had lower strength values, possibly due to impurities affecting cement hydration. Microalgae-treated water concrete showed intermediate strength levels, suggesting organic or biological factors may influence hydration, but it still gained strength with time. This study underscores the potential of microalgae-treated wastewater for sustainable concrete production, highlighting the importance of further research to optimize conditions and promote environmentally friendly construction practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索基于绿色微藻的植物修复处理废水在可持续混凝土生产中的潜力
来自生活、工业和农业的废水污染威胁着环境和人类健康。传统的废水处理方法需要消耗大量能源,会产生大量污泥,而且可能无法去除所有污染物。本研究探讨了使用微藻类 Chlorella sorokinianana 处理废水,并评估其对混凝土性能的影响。研究旨在优化微藻的生长条件,建立营养丰富的生长室,开发生物质分离方法,并评估微藻处理后的废水对混凝土的影响。使用扫描电子显微镜(SEM)分析了用微藻处理过的废水、淡水和污水处理厂(STP)水生产的混凝土结构。经微藻处理的废水制成的混凝土显示出具有明显间隙的八面体晶体,而淡水制成的混凝土则具有更致密的亚八面体到正八面体晶体。STP 水混凝土的强度值一直较低,这可能是由于杂质影响了水泥的水化。经过微藻处理的水混凝土显示出中等强度水平,这表明有机或生物因素可能会影响水化作用,但随着时间的推移,其强度仍会增加。这项研究强调了微藻处理废水在可持续混凝土生产方面的潜力,突出了进一步研究优化条件和推广环境友好型建筑实践的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Application of Ecofriendly Geopolymer Binder to Enhance the Strength and Swelling Properties of Expansive Soils Application of Fully Connected Neural Network-Based PyTorch in Concrete Compressive Strength Prediction Influence of Mechanical and Microscopic Properties of Red Sandstone Modified by Different Solid Waste Materials A Comparative Study of Subsurface Profile Using Bore Log Data and Geophysical Method at Mandideep Region, India Mapping Longitudinal and Transverse Displacements of a Dam Crest Based on the Synergy of High-Precision Remote Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1