{"title":"Analysis of Dynamic Evolution of Surrounding Rock Movement and Stress-Fracture in the Upward and Repeated Mining of Close-Distance Coal Seams","authors":"Ningbo Peng, Chunlei Zhang, Ruimin Feng, Arifuggaman Arif, Xi Chen, Weidong Zhang, Shuai Zhang, Mingjie Feng","doi":"10.1155/2024/5548837","DOIUrl":null,"url":null,"abstract":"The distribution of mining-induced stress and the resulting rock fractures are two crucial factors affecting mineral extraction in protective layer mining. This research establishes a correlation between the vertical fracture aperture and the second derivative of the rock layer’s subsidence curve equation. The article explores the span requirement for a simply supported beam to fracture. This condition is relevant to understanding the dynamic evolution of rock movement and stress fractures during repeated mining of close-distance coal seams. Our study investigates alterations in rock stress and fractures resulting from repeated upward mining of coal seams, using the nearby coal seam cluster in Jincheng Mine as a case study. The research findings indicate that during the mining of the upper coal seam, the roof experiences significant but brief periodic loading intervals, as well as severe and moderate periodic loading. As mining progresses to the lower coal seam, pressure relief of the upper coal seam gradually increases in both degree and range. In the upper coal seam, the vertical stress distribution follows a sequence of “V,” “U,” and “W” forms. The upper coal seam undergoes five stages of expansion deformation: compression, expansion, increased expansion, decreased expansion, and stable expansion.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"2019 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5548837","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution of mining-induced stress and the resulting rock fractures are two crucial factors affecting mineral extraction in protective layer mining. This research establishes a correlation between the vertical fracture aperture and the second derivative of the rock layer’s subsidence curve equation. The article explores the span requirement for a simply supported beam to fracture. This condition is relevant to understanding the dynamic evolution of rock movement and stress fractures during repeated mining of close-distance coal seams. Our study investigates alterations in rock stress and fractures resulting from repeated upward mining of coal seams, using the nearby coal seam cluster in Jincheng Mine as a case study. The research findings indicate that during the mining of the upper coal seam, the roof experiences significant but brief periodic loading intervals, as well as severe and moderate periodic loading. As mining progresses to the lower coal seam, pressure relief of the upper coal seam gradually increases in both degree and range. In the upper coal seam, the vertical stress distribution follows a sequence of “V,” “U,” and “W” forms. The upper coal seam undergoes five stages of expansion deformation: compression, expansion, increased expansion, decreased expansion, and stable expansion.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.