Jin Hee Kim, Mi-Young Park, Lanshuo Wang, Phan Phuong Thao Doan, Yueyue Yuan, Hyo-Yeon Lee, Jeongsik Kim
{"title":"Efficient CRISPR/Cas9-mediated gene editing of the ZjEIN2 gene in Zoysia japonica","authors":"Jin Hee Kim, Mi-Young Park, Lanshuo Wang, Phan Phuong Thao Doan, Yueyue Yuan, Hyo-Yeon Lee, Jeongsik Kim","doi":"10.1007/s11816-024-00890-9","DOIUrl":null,"url":null,"abstract":"<p>CRISPR/Cas9-based targeted gene editing has emerged as a versatile tool for deciphering gene function and improving traits in plants. However, this technique has not been applied to <i>Zoysia japonica</i>, a prominent warm-season turfgrass widely used for green spaces. Leaf senescence, a vital process affecting crop quality, occurs in <i>Z. japonica</i> during late growth, diminishing its aesthetic value and performance. In this study, we adeptly employed CRISPR/Cas9-mediated gene editing to create <i>Z. japonica</i> exhibiting delayed leaf senescence by targeting the <i>ZjEIN2</i> gene, a crucial regulator of ethylene-mediated senescence. Precise gene editing, which generated knockout mutations in <i>ZjEIN2</i>, led to delayed leaf senescence in both dark and ethylene treatment conditions. This provided strong evidence for <i>ZjEIN2</i>’s role in leaf senescence regulation. These findings highlight the potential of CRISPR/Cas9-mediated gene editing as a biotechnological strategy to enhance anti-senescence traits in <i>Z. japonica</i> and potentially other crops. This study carries significant implications for sustainable agriculture and turfgrass management, offering promising avenues for future applications and research.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00890-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR/Cas9-based targeted gene editing has emerged as a versatile tool for deciphering gene function and improving traits in plants. However, this technique has not been applied to Zoysia japonica, a prominent warm-season turfgrass widely used for green spaces. Leaf senescence, a vital process affecting crop quality, occurs in Z. japonica during late growth, diminishing its aesthetic value and performance. In this study, we adeptly employed CRISPR/Cas9-mediated gene editing to create Z. japonica exhibiting delayed leaf senescence by targeting the ZjEIN2 gene, a crucial regulator of ethylene-mediated senescence. Precise gene editing, which generated knockout mutations in ZjEIN2, led to delayed leaf senescence in both dark and ethylene treatment conditions. This provided strong evidence for ZjEIN2’s role in leaf senescence regulation. These findings highlight the potential of CRISPR/Cas9-mediated gene editing as a biotechnological strategy to enhance anti-senescence traits in Z. japonica and potentially other crops. This study carries significant implications for sustainable agriculture and turfgrass management, offering promising avenues for future applications and research.
期刊介绍:
Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.