Interplay of Spatial and Topological Defects in Polymer Networks

IF 4.3 Q2 ENGINEERING, CHEMICAL ACS Engineering Au Pub Date : 2024-02-29 DOI:10.1021/acsengineeringau.3c00072
B. Ruşen Argun,  and , Antonia Statt*, 
{"title":"Interplay of Spatial and Topological Defects in Polymer Networks","authors":"B. Ruşen Argun,&nbsp; and ,&nbsp;Antonia Statt*,&nbsp;","doi":"10.1021/acsengineeringau.3c00072","DOIUrl":null,"url":null,"abstract":"<p >Polymer networks are widely used in applications, and the formation of a network and its gel point can be predicted. However, the effects of spatial and topological heterogeneity on the resulting network structure and ultimately the mechanical properties, are less understood. To address this challenge, we generate in silico random networks of cross-linked polymer chains with controlled spatial and topological defects. While all fully reacted networks investigated in this study have the same number of end-functionalized polymer strands and cross-linkers, we vary the degree of spatial and topological heterogeneities systematically. We find that spatially heterogeneous cross-linker distributions result in a reduction in the network’s primary loops with increased spatial heterogeneity, the opposite trend as observed in homogeneous networks. By performing molecular dynamics simulations, we investigated the mechanical properties of the networks. Even though spatially heterogeneous networks have more elastically active strands and cross-linkers, they break at lower extensions than the homogeneous networks and sustain slightly lower maximum stresses. Their shear moduli are higher, i.e., stiffer, than theoretically predicted, and higher than their homogeneous gel counterparts. Our results highlight that topological loop defects and spatial heterogeneities result in significantly different network structures and, ultimately, different mechanical properties.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00072","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer networks are widely used in applications, and the formation of a network and its gel point can be predicted. However, the effects of spatial and topological heterogeneity on the resulting network structure and ultimately the mechanical properties, are less understood. To address this challenge, we generate in silico random networks of cross-linked polymer chains with controlled spatial and topological defects. While all fully reacted networks investigated in this study have the same number of end-functionalized polymer strands and cross-linkers, we vary the degree of spatial and topological heterogeneities systematically. We find that spatially heterogeneous cross-linker distributions result in a reduction in the network’s primary loops with increased spatial heterogeneity, the opposite trend as observed in homogeneous networks. By performing molecular dynamics simulations, we investigated the mechanical properties of the networks. Even though spatially heterogeneous networks have more elastically active strands and cross-linkers, they break at lower extensions than the homogeneous networks and sustain slightly lower maximum stresses. Their shear moduli are higher, i.e., stiffer, than theoretically predicted, and higher than their homogeneous gel counterparts. Our results highlight that topological loop defects and spatial heterogeneities result in significantly different network structures and, ultimately, different mechanical properties.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物网络中空间和拓扑缺陷的相互作用
聚合物网络被广泛应用于各种领域,网络的形成及其凝胶点是可以预测的。然而,人们对空间和拓扑异质性对所形成的网络结构以及最终的机械性能的影响却知之甚少。为了应对这一挑战,我们在硅学中生成了具有可控空间和拓扑缺陷的交联聚合物链随机网络。虽然本研究中调查的所有完全反应网络具有相同数量的末端官能化聚合物链和交联剂,但我们系统地改变了空间和拓扑异质性的程度。我们发现,随着空间异质性的增加,空间异质性交联剂分布会导致网络主环的减少,这与在均质网络中观察到的趋势相反。通过进行分子动力学模拟,我们研究了网络的机械特性。尽管空间异质性网络具有更多的弹性活性链和交联剂,但与同质性网络相比,它们的断裂延伸率更低,承受的最大应力也略低。它们的剪切模量比理论预测的要高,也就是更硬,也比同质凝胶要高。我们的研究结果突出表明,拓扑环路缺陷和空间异质性会导致明显不同的网络结构,并最终导致不同的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
期刊最新文献
Issue Editorial Masthead Issue Publication Information Magnetowetting Dynamics of Compound Droplets Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1