{"title":"Seasonal variation in atmospheric optical depth (AOD) and thermal inertia (TI) inter-relationship over Martian Gale crater","authors":"Farzana Shaheen, Mili Ghosh Nee Lala, A.P. Krishna, Swagata Payra","doi":"10.1016/j.pss.2024.105865","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating the relationship between thermal inertia (TI) and aerosol optical depth (AOD) is significant in giving insights into the seasonality of dust deposition and lifting phenomenon. The present study focuses on establishing a relationship of AOD with TI and different particle sizes over different Martian seasons. Two different Martian landforms (exposed rock and sand dunes) have been used to establish these relationships. TI layer was generated using THEMIS nighttime images for different seasons, whereas Curiosity Rover measured AOD values and Mars Climate database (MCD) visible column dust optical depth were used to derive rover equivalent AOD. An inverse relation was observed between AOD and TI for exposed rock and sand dune regions for all the seasons with low to moderate coefficient of determination (R<sup>2)</sup>. A similar inverse trend was observed between rover equivalent AOD and particle size with R<sup>2</sup> values ranging from 0.8 in the case of sand dunes (winter) to 0.93 in exposed rock (autumn). The results were further compared within the AOD obtained from orbiter image (HRSC) derived using Shadow method for spring season (Shaheen et al., 2022). The same inverse relation was found within TI having good R<sup>2</sup> values of 0.61 for exposed rock and 0.76 for the sand dunes. Error estimation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Mean Square Error (NMSE), Fractional Bias (FB), Index of agreement errors was carried out for TI vs. AOD and particle size vs. AOD. Excellent statistical significance was obtained for AOD and particle size, in the case of sand dunes it was 0.96 for autumn and 0.99 in case of exposed rock for spring season, respectively.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105865"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000291","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the relationship between thermal inertia (TI) and aerosol optical depth (AOD) is significant in giving insights into the seasonality of dust deposition and lifting phenomenon. The present study focuses on establishing a relationship of AOD with TI and different particle sizes over different Martian seasons. Two different Martian landforms (exposed rock and sand dunes) have been used to establish these relationships. TI layer was generated using THEMIS nighttime images for different seasons, whereas Curiosity Rover measured AOD values and Mars Climate database (MCD) visible column dust optical depth were used to derive rover equivalent AOD. An inverse relation was observed between AOD and TI for exposed rock and sand dune regions for all the seasons with low to moderate coefficient of determination (R2). A similar inverse trend was observed between rover equivalent AOD and particle size with R2 values ranging from 0.8 in the case of sand dunes (winter) to 0.93 in exposed rock (autumn). The results were further compared within the AOD obtained from orbiter image (HRSC) derived using Shadow method for spring season (Shaheen et al., 2022). The same inverse relation was found within TI having good R2 values of 0.61 for exposed rock and 0.76 for the sand dunes. Error estimation using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Mean Square Error (NMSE), Fractional Bias (FB), Index of agreement errors was carried out for TI vs. AOD and particle size vs. AOD. Excellent statistical significance was obtained for AOD and particle size, in the case of sand dunes it was 0.96 for autumn and 0.99 in case of exposed rock for spring season, respectively.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research