Burak B. Ozkara, Mert Karabacak, Meisam Hoseinyazdi, Samir A. Dagher, Richard Wang, Sadik Y. Karadon, F. Eymen Ucisik, Konstantinos Margetis, Max Wintermark, Vivek S. Yedavalli
{"title":"Utilizing imaging parameters for functional outcome prediction in acute ischemic stroke: A machine learning study","authors":"Burak B. Ozkara, Mert Karabacak, Meisam Hoseinyazdi, Samir A. Dagher, Richard Wang, Sadik Y. Karadon, F. Eymen Ucisik, Konstantinos Margetis, Max Wintermark, Vivek S. Yedavalli","doi":"10.1111/jon.13194","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>We aimed to predict the functional outcome of acute ischemic stroke patients with anterior circulation large vessel occlusions (LVOs), irrespective of how they were treated or the severity of the stroke at admission, by only using imaging parameters in machine learning models.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Consecutive adult patients with anterior circulation LVOs who were scanned with CT angiography (CTA) and CT perfusion were queried in this single-center, retrospective study. The favorable outcome was defined as a modified Rankin score (mRS) of 0-2 at 90 days. Predictor variables included only imaging parameters. CatBoost, XGBoost, and Random Forest were employed. Algorithms were evaluated using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), accuracy, Brier score, recall, and precision. SHapley Additive exPlanations were implemented.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A total of 180 patients (102 female) were included, with a median age of 69.5. Ninety-two patients had an mRS between 0 and 2. The best algorithm in terms of AUROC was XGBoost (0.91). Furthermore, the XGBoost model exhibited a precision of 0.72, a recall of 0.81, an AUPRC of 0.83, an accuracy of 0.78, and a Brier score of 0.17. Multiphase CTA collateral score was the most significant feature in predicting the outcome.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Using only imaging parameters, our model had an AUROC of 0.91 which was superior to most previous studies, indicating that imaging parameters may be as accurate as conventional predictors. The multiphase CTA collateral score was the most predictive variable, highlighting the importance of collaterals.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 3","pages":"356-365"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13194","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
We aimed to predict the functional outcome of acute ischemic stroke patients with anterior circulation large vessel occlusions (LVOs), irrespective of how they were treated or the severity of the stroke at admission, by only using imaging parameters in machine learning models.
Methods
Consecutive adult patients with anterior circulation LVOs who were scanned with CT angiography (CTA) and CT perfusion were queried in this single-center, retrospective study. The favorable outcome was defined as a modified Rankin score (mRS) of 0-2 at 90 days. Predictor variables included only imaging parameters. CatBoost, XGBoost, and Random Forest were employed. Algorithms were evaluated using the area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPRC), accuracy, Brier score, recall, and precision. SHapley Additive exPlanations were implemented.
Results
A total of 180 patients (102 female) were included, with a median age of 69.5. Ninety-two patients had an mRS between 0 and 2. The best algorithm in terms of AUROC was XGBoost (0.91). Furthermore, the XGBoost model exhibited a precision of 0.72, a recall of 0.81, an AUPRC of 0.83, an accuracy of 0.78, and a Brier score of 0.17. Multiphase CTA collateral score was the most significant feature in predicting the outcome.
Conclusions
Using only imaging parameters, our model had an AUROC of 0.91 which was superior to most previous studies, indicating that imaging parameters may be as accurate as conventional predictors. The multiphase CTA collateral score was the most predictive variable, highlighting the importance of collaterals.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!