Lysobacter enzymogenes: a fully armed biocontrol warrior1

IF 4.6 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Integrative Agriculture Pub Date : 2024-02-29 DOI:10.1016/j.jia.2024.02.021
Long Lin, Xiaolong Shao, Yicheng Yang, Aprodisia Kavutu Murero, Limin Wang, Gaoge Xu, Yangyang Zhao, Sen Han, Zhenhe Su, Kangwen Xu, Mingming Yang, Jinxing Liao, Kaihuai Li, Fengquan Liu, Guoliang Qian
{"title":"Lysobacter enzymogenes: a fully armed biocontrol warrior1","authors":"Long Lin, Xiaolong Shao, Yicheng Yang, Aprodisia Kavutu Murero, Limin Wang, Gaoge Xu, Yangyang Zhao, Sen Han, Zhenhe Su, Kangwen Xu, Mingming Yang, Jinxing Liao, Kaihuai Li, Fengquan Liu, Guoliang Qian","doi":"10.1016/j.jia.2024.02.021","DOIUrl":null,"url":null,"abstract":"is less-studied, but emerging as a powerful biocontrol bacterium producing multiple antimicrobial weapons including lytic enzymes, toxins, secondary metabolites and protein secretion systems. The loss of surface-attached flagellum, production of heat-stable antifungal factor (HSAF, also named as Ningrongmycin) as a novel antifungal antibiotic, and the use of the type IV secretion system (T4SS) rather than the common type VI secretion system (T6SS) to kill competitors make this species unique. These distinct features set apart from well-studied plant beneficial biocontrol agents, such as and . This review describes what takes to be a unique biocontrol warrior by focusing to illustrate how the lack of flagellum governs morphological and functional co-adaptability, what adapted signaling transduction pathways are adopted to coordinate the biosynthesis of HSAF, and how to ecologically adapt plant rhizosphere by cell-to-cell interacting microbiome members the bacterial-killing T4SS.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"3 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.02.021","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

is less-studied, but emerging as a powerful biocontrol bacterium producing multiple antimicrobial weapons including lytic enzymes, toxins, secondary metabolites and protein secretion systems. The loss of surface-attached flagellum, production of heat-stable antifungal factor (HSAF, also named as Ningrongmycin) as a novel antifungal antibiotic, and the use of the type IV secretion system (T4SS) rather than the common type VI secretion system (T6SS) to kill competitors make this species unique. These distinct features set apart from well-studied plant beneficial biocontrol agents, such as and . This review describes what takes to be a unique biocontrol warrior by focusing to illustrate how the lack of flagellum governs morphological and functional co-adaptability, what adapted signaling transduction pathways are adopted to coordinate the biosynthesis of HSAF, and how to ecologically adapt plant rhizosphere by cell-to-cell interacting microbiome members the bacterial-killing T4SS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶菌酶:全副武装的生物防治战士1
的研究较少,但它正在成为一种强大的生物控制细菌,可产生多种抗菌武器,包括溶解酶、毒素、次级代谢产物和蛋白质分泌系统。失去表面附着的鞭毛、产生作为新型抗真菌抗生素的热稳定抗真菌因子(HSAF,又名宁荣霉素),以及使用 IV 型分泌系统(T4SS)而非常见的 VI 型分泌系统(T6SS)来杀死竞争者,使该物种独树一帜。这些显著特点使其有别于已被充分研究的植物有益生物控制剂,如 和 。本综述通过重点说明缺乏鞭毛如何影响形态和功能的共同适应性、采用何种适应的信号转导途径来协调 HSAF 的生物合成,以及如何通过细胞间相互作用的微生物组成员杀死细菌的 T4SS 来从生态学角度适应植物根瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Agriculture
Journal of Integrative Agriculture AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
4.20%
发文量
4817
审稿时长
3-6 weeks
期刊介绍: Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.
期刊最新文献
Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions Rural labor migration and farmers’ arrangements of rice production systems in Central China: Insight from the intergenerational division of labor The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family Streptococcus suis serotype 2 collagenase-like protease promotes meningitis by increasing blood-brain barrier permeability1 Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1