Jie Cao, Jiacheng Fan, Chin-Ling Chen, Zhenyu Wu, Qingxuan Jiang, Shikai Li
{"title":"A Spinal MRI Image Segmentation Method Based on Improved Swin-UNet.","authors":"Jie Cao, Jiacheng Fan, Chin-Ling Chen, Zhenyu Wu, Qingxuan Jiang, Shikai Li","doi":"10.1080/0954898X.2024.2323530","DOIUrl":null,"url":null,"abstract":"<p><p>As the number of patients increases, physicians are dealing with more and more cases of degenerative spine pathologies on a daily basis. To reduce the workload of healthcare professionals, we propose a modified Swin-UNet network model. Firstly, the Swin Transformer Blocks are improved using a residual post-normalization and scaling cosine attention mechanism, which makes the training process of the model more stable and improves the accuracy. Secondly, we use the log-space continuous position biasing method instead of the bicubic interpolation position biasing method. This method solves the problem of performance loss caused by the large difference between the resolution of the pretraining image and the resolution of the spine image. Finally, we introduce a segmentation smooth module (SSM) at the decoder stage. The SSM effectively reduces redundancy, and enhances the segmentation edge processing to improve the model's segmentation accuracy. To validate the proposed method, we conducted experiments on a real dataset provided by hospitals. The average segmentation accuracy is no less than 95%. The experimental results demonstrate the superiority of the proposed method over the original model and other models of the same type in segmenting the spinous processes of the vertebrae and the posterior arch of the spine.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-29"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2323530","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As the number of patients increases, physicians are dealing with more and more cases of degenerative spine pathologies on a daily basis. To reduce the workload of healthcare professionals, we propose a modified Swin-UNet network model. Firstly, the Swin Transformer Blocks are improved using a residual post-normalization and scaling cosine attention mechanism, which makes the training process of the model more stable and improves the accuracy. Secondly, we use the log-space continuous position biasing method instead of the bicubic interpolation position biasing method. This method solves the problem of performance loss caused by the large difference between the resolution of the pretraining image and the resolution of the spine image. Finally, we introduce a segmentation smooth module (SSM) at the decoder stage. The SSM effectively reduces redundancy, and enhances the segmentation edge processing to improve the model's segmentation accuracy. To validate the proposed method, we conducted experiments on a real dataset provided by hospitals. The average segmentation accuracy is no less than 95%. The experimental results demonstrate the superiority of the proposed method over the original model and other models of the same type in segmenting the spinous processes of the vertebrae and the posterior arch of the spine.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.