Generating single-cell gene expression profiles for high-resolution spatial transcriptomics based on cell boundary images.

GigaByte (Hong Kong, China) Pub Date : 2024-02-20 eCollection Date: 2024-01-01 DOI:10.46471/gigabyte.110
Bohan Zhang, Mei Li, Qiang Kang, Zhonghan Deng, Hua Qin, Kui Su, Xiuwen Feng, Lichuan Chen, Huanlin Liu, Shuangsang Fang, Yong Zhang, Yuxiang Li, Susanne Brix, Xun Xu
{"title":"Generating single-cell gene expression profiles for high-resolution spatial transcriptomics based on cell boundary images.","authors":"Bohan Zhang, Mei Li, Qiang Kang, Zhonghan Deng, Hua Qin, Kui Su, Xiuwen Feng, Lichuan Chen, Huanlin Liu, Shuangsang Fang, Yong Zhang, Yuxiang Li, Susanne Brix, Xun Xu","doi":"10.46471/gigabyte.110","DOIUrl":null,"url":null,"abstract":"<p><p>In spatially resolved transcriptomics, Stereo-seq facilitates the analysis of large tissues at the single-cell level, offering subcellular resolution and centimeter-level field-of-view. Our previous work on StereoCell introduced a one-stop software using cell nuclei staining images and statistical methods to generate high-confidence single-cell spatial gene expression profiles for Stereo-seq data. With advancements allowing the acquisition of cell boundary information, such as cell membrane/wall staining images, we updated our software to a new version, STCellbin. Using cell nuclei staining images, STCellbin aligns cell membrane/wall staining images with spatial gene expression maps. Advanced cell segmentation ensures the detection of accurate cell boundaries, leading to more reliable single-cell spatial gene expression profiles. We verified that STCellbin can be applied to mouse liver (cell membranes) and <i>Arabidopsis</i> seed (cell walls) datasets, outperforming other methods. The improved capability of capturing single-cell gene expression profiles results in a deeper understanding of the contribution of single-cell phenotypes to tissue biology.</p><p><strong>Availability & implementation: </strong>The source code of STCellbin is available at https://github.com/STOmics/STCellbin.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte110"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In spatially resolved transcriptomics, Stereo-seq facilitates the analysis of large tissues at the single-cell level, offering subcellular resolution and centimeter-level field-of-view. Our previous work on StereoCell introduced a one-stop software using cell nuclei staining images and statistical methods to generate high-confidence single-cell spatial gene expression profiles for Stereo-seq data. With advancements allowing the acquisition of cell boundary information, such as cell membrane/wall staining images, we updated our software to a new version, STCellbin. Using cell nuclei staining images, STCellbin aligns cell membrane/wall staining images with spatial gene expression maps. Advanced cell segmentation ensures the detection of accurate cell boundaries, leading to more reliable single-cell spatial gene expression profiles. We verified that STCellbin can be applied to mouse liver (cell membranes) and Arabidopsis seed (cell walls) datasets, outperforming other methods. The improved capability of capturing single-cell gene expression profiles results in a deeper understanding of the contribution of single-cell phenotypes to tissue biology.

Availability & implementation: The source code of STCellbin is available at https://github.com/STOmics/STCellbin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于细胞边界图像生成高分辨率空间转录组学的单细胞基因表达谱。
在空间分辨转录组学中,Stereo-seq 可提供亚细胞分辨率和厘米级视场,有助于在单细胞水平分析大型组织。我们之前在 StereoCell 方面的研究推出了一款一站式软件,利用细胞核染色图像和统计方法为 Stereoseq 数据生成高置信度的单细胞空间基因表达谱。随着获取细胞边界信息(如细胞膜/壁染色图像)技术的进步,我们将软件更新为新版本 STCellbin。STCellbin 利用细胞核染色图像,将细胞膜/壁染色图像与空间基因表达图谱对齐。先进的细胞分割技术可确保检测到准确的细胞边界,从而获得更可靠的单细胞空间基因表达图谱。我们验证了 STCellbin 可用于小鼠肝脏(细胞膜)和拟南芥种子(细胞壁)数据集,其性能优于其他方法。单细胞基因表达谱捕获能力的提高有助于深入了解单细胞表型对组织生物学的贡献:STCellbin的源代码可在https://github.com/STOmics/STCellbin。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
The genome of the sapphire damselfish Chrysiptera cyanea: a new resource to support further investigation of the evolution of Pomacentrids. Polyploid genome assembly of Cardamine chenopodiifolia. NeuroVar: an open-source tool for the visualization of gene expression and variation data for biomarkers of neurological diseases. Whole-genome re-sequencing of the Baikal seal and other phocid seals for a glimpse into their genetic diversity, demographic history, and phylogeny. Chromosome-level genome assembly and annotation of the crested gecko, Correlophus ciliatus, a lizard incapable of tail regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1