{"title":"Surgical treatment of small recurrent gliomas based on MR imaging examination","authors":"Shukun Hu , Liqian Xie , Yi Zhang","doi":"10.1016/j.medengphy.2024.104139","DOIUrl":null,"url":null,"abstract":"<div><p>Microrecurrent glioma is a common neurological tumor, and the key to its surgical treatment is to accurately evaluate the size, location and degree of recurrence of the lesion. The purpose of this study was to explore the surgical treatment of microrecurrent glioma based on MR Imaging, and to provide accurate and reliable basis for clinical decision-making. Before surgery, detailed MR Imaging tests were performed for each patient to accurately locate and evaluate the characteristics of the lesions. Multimodal imaging examination were arranged to accurate the pre-operation diagnosis. Neuro-navigation is necessary for the operation design and tumor confirmation. Function monitor and intraoperation MR were prepared when necessary.Mini was defined by the size, location and symptoms. In all 5 cases requiring reoperation, total resection was achieved. No systemic and local complications occurred. No permeant neurological dysfunction remained. The average stay time after the operation is days. All patients survived in the recent follow-up. Reoperation of mini recurrent glioma is a good treatment choice. We made little injury to patients, which wouldn't affect their conditions and next therapies. Through MR Imaging, the diagnosis and location of microrecurrent glioma, as well as the relationship with surrounding tissues and the degree of infiltration, provide important information for surgeons to evaluate the resectable lesion. By combining MR And functional imaging results, the blood supply and functional area of the lesion can be monitored in real time during surgery, thereby reducing surgical risk and maximizing the protection of surrounding healthy tissue.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000407","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microrecurrent glioma is a common neurological tumor, and the key to its surgical treatment is to accurately evaluate the size, location and degree of recurrence of the lesion. The purpose of this study was to explore the surgical treatment of microrecurrent glioma based on MR Imaging, and to provide accurate and reliable basis for clinical decision-making. Before surgery, detailed MR Imaging tests were performed for each patient to accurately locate and evaluate the characteristics of the lesions. Multimodal imaging examination were arranged to accurate the pre-operation diagnosis. Neuro-navigation is necessary for the operation design and tumor confirmation. Function monitor and intraoperation MR were prepared when necessary.Mini was defined by the size, location and symptoms. In all 5 cases requiring reoperation, total resection was achieved. No systemic and local complications occurred. No permeant neurological dysfunction remained. The average stay time after the operation is days. All patients survived in the recent follow-up. Reoperation of mini recurrent glioma is a good treatment choice. We made little injury to patients, which wouldn't affect their conditions and next therapies. Through MR Imaging, the diagnosis and location of microrecurrent glioma, as well as the relationship with surrounding tissues and the degree of infiltration, provide important information for surgeons to evaluate the resectable lesion. By combining MR And functional imaging results, the blood supply and functional area of the lesion can be monitored in real time during surgery, thereby reducing surgical risk and maximizing the protection of surrounding healthy tissue.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.