首页 > 最新文献

Medical Engineering & Physics最新文献

英文 中文
New training simulator for lumbar puncture base on magnetorheological 基于磁流变技术的新型腰椎穿刺培训模拟器
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-16 DOI: 10.1016/j.medengphy.2024.104240

In response to the difficulties in accurately reproducing the resistance drop generated by puncturing key tissue layers with a needle and the poor experience in existing simulators, based on the continuous controllability and rapid response of magnetorheological fluid under the influence of a magnetic field, this paper proposes a lumbar puncture training simulator(LPTS) that can accurately simulate the puncture feedback force within tissues such as the skin, subcutaneous fat, and supraspinous ligament throughout the entire process. By using a dual rod structure and reasonably arranging the damping channel gap, the influence of mechanical friction and zero-field damping force on the feedback force during tissue progression is minimized. This paper introduces the acquisition and modeling analysis of raw data, and based on this, the design, simulation, and mechanical testing of the simulator are carried out. Finally, a performance testing platform for the simulator is established to evaluate its tracking performance of the expected puncture strength and the reproducibility of the puncture sensation. The results show that the experimental puncture strength deviates from the expected puncture strength by 0.35 N to 0.61 N in the crucial steps of breaking through the supraspinous ligament, interspinous ligament, ligamentum flavum, and dura mater, with a relative error below 10 %.

针对现有模拟器难以准确再现用针穿刺关键组织层时产生的阻力下降,以及使用体验不佳的问题,本文基于磁流变液在磁场作用下的连续可控性和快速响应性,提出了一种腰椎穿刺训练模拟器(LPTS),可全程准确模拟皮肤、皮下脂肪、棘上韧带等组织内的穿刺反馈力。通过采用双杆结构和合理布置阻尼通道间隙,最大限度地减少了组织运动过程中机械摩擦和零场阻尼力对反馈力的影响。本文介绍了原始数据的采集和建模分析,并在此基础上进行了模拟器的设计、仿真和机械测试。最后,建立了模拟器的性能测试平台,以评估其对预期穿刺强度的跟踪性能和穿刺感觉的再现性。结果表明,在突破棘上韧带、棘间韧带、黄韧带和硬脑膜的关键步骤中,实验穿刺强度与预期穿刺强度的偏差为 0.35 N 至 0.61 N,相对误差低于 10%。
{"title":"New training simulator for lumbar puncture base on magnetorheological","authors":"","doi":"10.1016/j.medengphy.2024.104240","DOIUrl":"10.1016/j.medengphy.2024.104240","url":null,"abstract":"<div><p>In response to the difficulties in accurately reproducing the resistance drop generated by puncturing key tissue layers with a needle and the poor experience in existing simulators, based on the continuous controllability and rapid response of magnetorheological fluid under the influence of a magnetic field, this paper proposes a lumbar puncture training simulator(LPTS) that can accurately simulate the puncture feedback force within tissues such as the skin, subcutaneous fat, and supraspinous ligament throughout the entire process. By using a dual rod structure and reasonably arranging the damping channel gap, the influence of mechanical friction and zero-field damping force on the feedback force during tissue progression is minimized. This paper introduces the acquisition and modeling analysis of raw data, and based on this, the design, simulation, and mechanical testing of the simulator are carried out. Finally, a performance testing platform for the simulator is established to evaluate its tracking performance of the expected puncture strength and the reproducibility of the puncture sensation. The results show that the experimental puncture strength deviates from the expected puncture strength by 0.35 N to 0.61 N in the crucial steps of breaking through the supraspinous ligament, interspinous ligament, ligamentum flavum, and dura mater, with a relative error below 10 %.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crack propagation in TPMS scaffolds under monotonic axial load: Effect of morphology 单调轴向载荷下 TPMS 支架的裂纹扩展:形态的影响
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-03 DOI: 10.1016/j.medengphy.2024.104235

In this paper, the mechanical behaviour and failure of porous additively manufactured (AM) polylactide (PLA) scaffolds based on the triply periodic minimal surfaces (TPMS) is investigated using numerical calculations of their unit cells and representative volumes. The strain-amplification factor is chosen as the main parameter, and the most critical locations for failure of different types of scaffold structures are evaluated. The results obtained are presented in comparison with a multiple-crack-growth algorithm using the extended finite element method (XFEM), underpinned by the experimentally obtained fracture properties of PLA. The effect of morphology of TPMS structures on the pre-critical, critical and post-critical behaviours of scaffolds under monotonic loading regimes is assessed. The results provide an understanding of the fracture behaviour and main risk points for crack initiation in structures of AM-PLA scaffolds based on typical commonly used types of TPMS, as well as the influence of structure type and external load on this behaviour.

本文通过对多孔聚乳酸(PLA)支架的单元格和代表体积进行数值计算,研究了基于三周期极小表面(TPMS)的多孔添加剂制造(AM)支架的机械性能和失效。应变放大系数被选为主要参数,并评估了不同类型支架结构失效的最关键位置。在实验获得的聚乳酸断裂特性的支持下,将获得的结果与使用扩展有限元法(XFEM)的多裂缝生长算法进行了比较。评估了 TPMS 结构的形态对单调加载条件下支架的临界前、临界和临界后行为的影响。研究结果有助于了解基于典型常用 TPMS 类型的 AM-PLA 支架结构的断裂行为和裂纹萌发的主要风险点,以及结构类型和外部载荷对这种行为的影响。
{"title":"Crack propagation in TPMS scaffolds under monotonic axial load: Effect of morphology","authors":"","doi":"10.1016/j.medengphy.2024.104235","DOIUrl":"10.1016/j.medengphy.2024.104235","url":null,"abstract":"<div><p>In this paper, the mechanical behaviour and failure of porous additively manufactured (AM) polylactide (PLA) scaffolds based on the triply periodic minimal surfaces (TPMS) is investigated using numerical calculations of their unit cells and representative volumes. The strain-amplification factor is chosen as the main parameter, and the most critical locations for failure of different types of scaffold structures are evaluated. The results obtained are presented in comparison with a multiple-crack-growth algorithm using the extended finite element method (XFEM), underpinned by the experimentally obtained fracture properties of PLA. The effect of morphology of TPMS structures on the pre-critical, critical and post-critical behaviours of scaffolds under monotonic loading regimes is assessed. The results provide an understanding of the fracture behaviour and main risk points for crack initiation in structures of AM-PLA scaffolds based on typical commonly used types of TPMS, as well as the influence of structure type and external load on this behaviour.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active constraint control for the surgical robotic platform with concentric connector joints 带同心连接器关节的手术机器人平台的主动约束控制
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-02 DOI: 10.1016/j.medengphy.2024.104236

Robotic minimally invasive surgery (MIS) has changed numerous surgical techniques in the past few years and enhanced their results. Haptic feedback is integrated into robotic surgical systems to restore the surgeon's perception of forces in response to interaction with objects in the surgical environment. The ideal exact emulation of the robot's interaction with its physical environment in free space is a very challenging problem to solve completely. Previously, we introduced the surgical robotic platform (SRP) with a novel concentric connector joint (CCJ). This study aims to develop a haptic control system that integrates an active constraint controller into a surgical robot platform. We have successfully established haptic feedback control for the surgical robot using constraint control and inverse kinematic relationships integrated into the overall positioning structure. A preliminary feasibility study, modelling, and simulation were presented.

在过去几年里,机器人微创手术(MIS)改变了许多外科技术,提高了手术效果。触觉反馈被集成到机器人手术系统中,以恢复外科医生在手术环境中与物体互动时对力的感知。在自由空间中理想地精确模拟机器人与其物理环境的互动是一个极具挑战性的问题,很难完全解决。在此之前,我们介绍了带有新型同心接头(CCJ)的手术机器人平台(SRP)。本研究旨在开发一种将主动约束控制器集成到手术机器人平台的触觉控制系统。我们成功地为手术机器人建立了触觉反馈控制,将约束控制和反向运动关系集成到整体定位结构中。我们介绍了初步的可行性研究、建模和仿真。
{"title":"Active constraint control for the surgical robotic platform with concentric connector joints","authors":"","doi":"10.1016/j.medengphy.2024.104236","DOIUrl":"10.1016/j.medengphy.2024.104236","url":null,"abstract":"<div><p>Robotic minimally invasive surgery (MIS) has changed numerous surgical techniques in the past few years and enhanced their results. Haptic feedback is integrated into robotic surgical systems to restore the surgeon's perception of forces in response to interaction with objects in the surgical environment. The ideal exact emulation of the robot's interaction with its physical environment in free space is a very challenging problem to solve completely. Previously, we introduced the surgical robotic platform (SRP) with a novel concentric connector joint (CCJ). This study aims to develop a haptic control system that integrates an active constraint controller into a surgical robot platform. We have successfully established haptic feedback control for the surgical robot using constraint control and inverse kinematic relationships integrated into the overall positioning structure. A preliminary feasibility study, modelling, and simulation were presented.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324001371/pdfft?md5=a624afbf4e8e10bc7ca925b318172c11&pid=1-s2.0-S1350453324001371-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computer simulation of low-power and long-duration bipolar radiofrequency ablation under various baseline impedances 计算机模拟各种基线阻抗下的低功率和长时间双极射频消融术
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 DOI: 10.1016/j.medengphy.2024.104226

Compared to traditional unipolar radiofrequency ablation (RFA), bipolar RFA offers advantages such as more precise heat transfer and higher ablation efficiency. Clinically, myocardial baseline impedance (BI) is one of the important factors affecting the effectiveness of ablation. We aim at finding suitable ablation protocols and coping strategies by analyzing the ablation effects and myocardial impedance changes of bipolar RFA under different BIs. In this research, a three-dimensional local myocardial computer model was constructed for bipolar RFA simulation, and in vitro experimental data were used to validate accuracy. Four fixed low-power levels (20 W, 25 W, 30 W, and 35 W) and six myocardial BIs (91.02 Ω, 99.83 Ω, 111.03 Ω, 119.77 Ω, 130.03 Ω, and 135.45 Ω) were set as initial conditions, with an ablation duration of 120-s. In the context of low-power and long-duration (LPLD) ablation, the maximum TID (TIDM) decreased by 21–32 Ω, depending on the BI. In cases where steam pop did not occur, TIDM increased with the increase in power. For the same power, there was no significant difference in TIDM for the range of BIs. In cases where steam pop occurred, for every 1 Ω increase in BI, TIDM increased by 0.34–0.41 Ω. The simulation results also showed that using a higher power resulted in a smaller decrease in TIDM. This study provided appropriate ablation times and impedance decrease ranges for bipolar LPLD RFA. The combination of 25 W for 120-s offered optimal performance when considering effectiveness and safety simultaneously.

与传统的单极射频消融术(RFA)相比,双极射频消融术具有传热更精确、消融效率更高的优点。临床上,心肌基线阻抗(BI)是影响消融效果的重要因素之一。我们旨在通过分析双极射频消融术在不同基线阻抗下的消融效果和心肌阻抗变化,找到合适的消融方案和应对策略。在这项研究中,我们构建了一个三维局部心肌计算机模型用于双极 RFA 模拟,并使用体外实验数据验证其准确性。初始条件设定为四个固定的低功率水平(20 W、25 W、30 W 和 35 W)和六个心肌 BI(91.02 Ω、99.83 Ω、111.03 Ω、119.77 Ω、130.03 Ω 和 135.45 Ω),消融持续时间为 120 秒。在低功率长持续时间(LPLD)消融的情况下,最大 TID(TIDM)下降了 21-32 Ω,具体取决于 BI。在没有发生蒸汽爆裂的情况下,TIDM 随着功率的增加而增加。在相同功率下,不同 BI 的 TIDM 没有显著差异。模拟结果还显示,功率越大,TIDM 的下降幅度越小。这项研究为双极 LPLD RFA 提供了合适的消融时间和阻抗下降范围。在同时考虑有效性和安全性的情况下,25 W、120 秒的组合提供了最佳性能。
{"title":"Computer simulation of low-power and long-duration bipolar radiofrequency ablation under various baseline impedances","authors":"","doi":"10.1016/j.medengphy.2024.104226","DOIUrl":"10.1016/j.medengphy.2024.104226","url":null,"abstract":"<div><p>Compared to traditional unipolar radiofrequency ablation (RFA), bipolar RFA offers advantages such as more precise heat transfer and higher ablation efficiency. Clinically, myocardial baseline impedance (BI) is one of the important factors affecting the effectiveness of ablation. We aim at finding suitable ablation protocols and coping strategies by analyzing the ablation effects and myocardial impedance changes of bipolar RFA under different BIs. In this research, a three-dimensional local myocardial computer model was constructed for bipolar RFA simulation, and <em>in vitro</em> experimental data were used to validate accuracy. Four fixed low-power levels (20 W, 25 W, 30 W, and 35 W) and six myocardial BIs (91.02 Ω, 99.83 Ω, 111.03 Ω, 119.77 Ω, 130.03 Ω, and 135.45 Ω) were set as initial conditions, with an ablation duration of 120-s. In the context of low-power and long-duration (LPLD) ablation, the maximum TID (TID<sub>M</sub>) decreased by 21–32 Ω, depending on the BI. In cases where steam pop did not occur, TID<sub>M</sub> increased with the increase in power. For the same power, there was no significant difference in TID<sub>M</sub> for the range of BIs. In cases where steam pop occurred, for every 1 Ω increase in BI, TID<sub>M</sub> increased by 0.34–0.41 Ω. The simulation results also showed that using a higher power resulted in a smaller decrease in TID<sub>M</sub>. This study provided appropriate ablation times and impedance decrease ranges for bipolar LPLD RFA. The combination of 25 W for 120-s offered optimal performance when considering effectiveness and safety simultaneously.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time identification of noise type contaminated in surface electromyogram signals using efficient statistical features 利用高效统计特征实时识别表面肌电信号中受污染的噪声类型
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 DOI: 10.1016/j.medengphy.2024.104232

Different types of noise contaminating the surface electromyogram (EMG) signal may degrade the recognition performance. For noise removal, the type of noise has to first be identified. In this paper, we propose a real-time efficient system for identifying a clean EMG signal and noisy EMG signals contaminated with any one of the following three types of noise: electrocardiogram interference, spike noise, and power line interference. Two statistical descriptors, kurtosis and skewness, are used as input features for the cascading quadratic discriminant analysis classifier. An efficient simplification of kurtosis and skewness calculations that can reduce computation time and memory storage is proposed. The experimental results from the real-time system based on an ATmega 2560 microcontroller demonstrate that the kurtosis and skewness values show root mean square errors between the traditional and proposed efficient techniques of 0.08 and 0.09, respectively. The identification accuracy with five-fold cross-validation resulting from the quadratic discriminant analysis classifier is 96.00%.

表面肌电图(EMG)信号中不同类型的噪声可能会降低识别性能。要去除噪声,首先必须识别噪声的类型。在本文中,我们提出了一种实时高效的系统,用于识别干净的肌电信号和受到以下三种噪声中任何一种噪声污染的肌电信号:心电图干扰、尖峰噪声和电源线干扰。峰度和偏度这两个统计描述符被用作级联二次判别分析分类器的输入特征。提出了一种有效的峰度和偏度计算简化方法,可以减少计算时间和内存存储。基于 ATmega 2560 微控制器的实时系统的实验结果表明,峰度和倾斜度值的均方根误差在传统技术和所提出的高效技术之间分别为 0.08 和 0.09。二次判别分析分类器的五倍交叉验证识别准确率为 96.00%。
{"title":"Real-time identification of noise type contaminated in surface electromyogram signals using efficient statistical features","authors":"","doi":"10.1016/j.medengphy.2024.104232","DOIUrl":"10.1016/j.medengphy.2024.104232","url":null,"abstract":"<div><p>Different types of noise contaminating the surface electromyogram (EMG) signal may degrade the recognition performance. For noise removal, the type of noise has to first be identified. In this paper, we propose a real-time efficient system for identifying a clean EMG signal and noisy EMG signals contaminated with any one of the following three types of noise: electrocardiogram interference, spike noise, and power line interference. Two statistical descriptors, kurtosis and skewness, are used as input features for the cascading quadratic discriminant analysis classifier. An efficient simplification of kurtosis and skewness calculations that can reduce computation time and memory storage is proposed. The experimental results from the real-time system based on an ATmega 2560 microcontroller demonstrate that the kurtosis and skewness values show root mean square errors between the traditional and proposed efficient techniques of 0.08 and 0.09, respectively. The identification accuracy with five-fold cross-validation resulting from the quadratic discriminant analysis classifier is 96.00%.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the milling response of an artificial temporal bone developed for otologic surgery in comparison with human cadaveric samples 用于耳科手术的人工颞骨的铣削反应分析与人体样本的比较
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 DOI: 10.1016/j.medengphy.2024.104220

Temporal-bone milling is a delicate process commonly performed during otologic surgery to gain access to the middle and inner ear structures. Because of the numerous at-risk structures of this anatomic area, extensive surgeon training is required. Artificial temporal bones offer an interesting alternative to cadaveric training. However, the evaluation of such simulators has not been systematic, with an absence of objective validation of their milling response, especially in a surgical context.

By measuring the milling forces obtained during the classical steps of otologic surgery on six 3D-printed and three cadaveric temporal bones, this work aims at evaluating the ability of the OTOtwin® synthetic temporal bone to reproduce human bone behavior.

A better repeatability was obtained for artificial bones than for cadaveric ones. However, the level of forces recorded during artificial bone milling was close to the one measured with cadaveric samples. The effects of both surgical phase and irrigation on milling force levels were also quantified. The experiments conducted in this study confirmed the suitability of OTOtwin® temporal bone model for both otologic surgery training and research purposes. Valuable insights were also gained from this study regarding the understanding of the otologic milling process.

颞骨铣削术是耳科手术中常见的精细过程,目的是进入中耳和内耳结构。由于这一解剖区域的风险结构众多,因此需要对外科医生进行广泛的培训。人工颞骨为尸体训练提供了一个有趣的替代方案。通过测量耳科手术经典步骤中在六块三维打印颞骨和三块尸体颞骨上获得的铣削力,这项工作旨在评估 OTOtwin® 合成颞骨再现人体骨骼行为的能力。然而,人工骨铣削过程中记录的力水平接近于尸体样本的测量值。此外,还量化了手术阶段和灌洗对铣削力水平的影响。本研究中进行的实验证实了 OTOtwin® 颞骨模型适用于耳科手术培训和研究目的。本研究还在了解耳科铣削过程方面获得了宝贵的见解。
{"title":"Analysis of the milling response of an artificial temporal bone developed for otologic surgery in comparison with human cadaveric samples","authors":"","doi":"10.1016/j.medengphy.2024.104220","DOIUrl":"10.1016/j.medengphy.2024.104220","url":null,"abstract":"<div><p>Temporal-bone milling is a delicate process commonly performed during otologic surgery to gain access to the middle and inner ear structures. Because of the numerous at-risk structures of this anatomic area, extensive surgeon training is required. Artificial temporal bones offer an interesting alternative to cadaveric training. However, the evaluation of such simulators has not been systematic, with an absence of objective validation of their milling response, especially in a surgical context.</p><p>By measuring the milling forces obtained during the classical steps of otologic surgery on six 3D-printed and three cadaveric temporal bones, this work aims at evaluating the ability of the OTOtwin® synthetic temporal bone to reproduce human bone behavior.</p><p>A better repeatability was obtained for artificial bones than for cadaveric ones. However, the level of forces recorded during artificial bone milling was close to the one measured with cadaveric samples. The effects of both surgical phase and irrigation on milling force levels were also quantified. The experiments conducted in this study confirmed the suitability of OTOtwin® temporal bone model for both otologic surgery training and research purposes. Valuable insights were also gained from this study regarding the understanding of the otologic milling process.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324001218/pdfft?md5=2deb85e5c06eb5586c9156c86dde09ac&pid=1-s2.0-S1350453324001218-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An optimal fast fractal method for breast masses diagnosis using machine learning 利用机器学习诊断乳腺肿块的最佳快速分形法
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-23 DOI: 10.1016/j.medengphy.2024.104234

This article introduces a fast fractal method for classifying breast cancerous lesions in mammography. While fractal methods are valuable for extracting information, they often come with a high computational load and time consumption. This paper demonstrates that extracting optimal fractal information and focusing only on valuable information for classification not only improves computation speed and reduces process load but also enhances classification accuracy. To achieve this, we define an objective function based on accurate classification of benign and malignant masses to identify the best scale. Instead of extracting information from all nine scales, we extract and employ information solely from the best scale for classification. We validate the obtained scales using three classifiers: Support Vector Machine (SVM), Genetic Algorithm (GA), and Deep Learning (DL), which confirm the effectiveness of the proposed method. Comparative analysis with other studies reveals improved classification performance with the presented method.

本文介绍了一种用于乳腺 X 射线照相术中乳腺癌病灶分类的快速分形方法。虽然分形方法在提取信息方面很有价值,但它们通常会带来很高的计算负荷和时间消耗。本文证明,提取最佳分形信息并只关注有价值的信息进行分类,不仅能提高计算速度、减少处理负荷,还能提高分类准确性。为此,我们定义了一个基于良性和恶性肿块准确分类的目标函数,以确定最佳尺度。我们不再从所有九个标度中提取信息,而是只从最佳标度中提取信息并用于分类。我们使用三种分类器对获得的标度进行验证:支持向量机(SVM)、遗传算法(GA)和深度学习(DL)验证了所提方法的有效性。与其他研究的对比分析表明,所提出的方法提高了分类性能。
{"title":"An optimal fast fractal method for breast masses diagnosis using machine learning","authors":"","doi":"10.1016/j.medengphy.2024.104234","DOIUrl":"10.1016/j.medengphy.2024.104234","url":null,"abstract":"<div><p>This article introduces a fast fractal method for classifying breast cancerous lesions in mammography. While fractal methods are valuable for extracting information, they often come with a high computational load and time consumption. This paper demonstrates that extracting optimal fractal information and focusing only on valuable information for classification not only improves computation speed and reduces process load but also enhances classification accuracy. To achieve this, we define an objective function based on accurate classification of benign and malignant masses to identify the best scale. Instead of extracting information from all nine scales, we extract and employ information solely from the best scale for classification. We validate the obtained scales using three classifiers: Support Vector Machine (SVM), Genetic Algorithm (GA), and Deep Learning (DL), which confirm the effectiveness of the proposed method. Comparative analysis with other studies reveals improved classification performance with the presented method.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of setup parameters on the measured kinetic output of cervical disc prostheses 设置参数对颈椎椎间盘假体动力输出测量值的影响
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-22 DOI: 10.1016/j.medengphy.2024.104227

Mechanical testing machines are used to evaluate kinematics, kinetics, wear, and efficacy of spinal implants. The simulation of "physiological" spinal loading conditions necessitates the simultaneous use of multiple actuators. The challenge in achieving a desired loading profile lies in achieving close synchronization of these actuators. Errors in load application can be attributed to both the control system and the intrinsic sample response. Moreover, the presence of friction in the setup can have an impact on the measured outcome. The optimization of setup parameters can substantially improve the ability to simulate spinal loading conditions and obtain reliable data on implant performance. In this study, a reproducible kinematic test protocol was developed to evaluate the sensitivity of the kinetic response (i.e., measured loads, moments, and stiffnesses) of a cervical disc prosthesis to several testing parameters. In this context, five ceramic ball and socket sample implants were mounted in a 6 DOF material testing machine and tested with a constant axial compressive force of 100 N in two motion modes: 1) flexion-extension (±7.5°) and 2) lateral bending (±6°). Parameters including rotation rate, slider friction, friction between the samples' articulating surfaces, and moment arm were considered to determine their effects on measured kinetic parameters. The sensitivity analysis indicated that all setup parameters except friction between the samples' articulating surfaces had a substantial effect on the results. The findings were then compared to predictions from a free body diagram to determine the optimal setup parameters. Consequently, the setup with the lowest rotation rate and employing passive sliders yielded results that were consistent with the free body diagram. This study demonstrated the significance of a comprehensive setup evaluation for reliable and reproducible testing of spinal implants, also for comparison between labs.

机械试验机用于评估脊柱植入物的运动学、动力学、磨损和功效。模拟 "生理 "脊柱加载条件需要同时使用多个致动器。实现理想加载曲线的挑战在于实现这些致动器的紧密同步。加载过程中的误差可归因于控制系统和样本的固有反应。此外,设置中存在的摩擦也会对测量结果产生影响。设置参数的优化可以大大提高模拟脊柱加载条件的能力,并获得有关植入物性能的可靠数据。本研究开发了一种可重复的运动学测试方案,以评估颈椎间盘假体的动力学响应(即测量的载荷、力矩和刚度)对几个测试参数的敏感性。在这种情况下,将五个陶瓷球和套筒样本植入体安装在一台 6 DOF 材料试验机中,在两种运动模式下以 100 N 的恒定轴向压缩力进行测试:1)屈伸(±7.5°)和 2)侧弯(±6°)。考虑的参数包括旋转率、滑块摩擦力、样品铰接面之间的摩擦力和力矩臂,以确定它们对测量的动力学参数的影响。灵敏度分析表明,除样品铰接面之间的摩擦力外,所有设置参数都对结果有很大影响。然后将分析结果与自由体图的预测结果进行比较,以确定最佳设置参数。结果发现,采用最低旋转率和被动滑块的设置结果与自由体图一致。这项研究表明,对脊柱植入物进行可靠、可重复的测试,以及对实验室之间的比较进行全面的设置评估具有重要意义。
{"title":"The effects of setup parameters on the measured kinetic output of cervical disc prostheses","authors":"","doi":"10.1016/j.medengphy.2024.104227","DOIUrl":"10.1016/j.medengphy.2024.104227","url":null,"abstract":"<div><p>Mechanical testing machines are used to evaluate kinematics, kinetics, wear, and efficacy of spinal implants. The simulation of \"physiological\" spinal loading conditions necessitates the simultaneous use of multiple actuators. The challenge in achieving a desired loading profile lies in achieving close synchronization of these actuators. Errors in load application can be attributed to both the control system and the intrinsic sample response. Moreover, the presence of friction in the setup can have an impact on the measured outcome. The optimization of setup parameters can substantially improve the ability to simulate spinal loading conditions and obtain reliable data on implant performance. In this study, a reproducible kinematic test protocol was developed to evaluate the sensitivity of the kinetic response (i.e., measured loads, moments, and stiffnesses) of a cervical disc prosthesis to several testing parameters. In this context, five ceramic ball and socket sample implants were mounted in a 6 DOF material testing machine and tested with a constant axial compressive force of 100 N in two motion modes: 1) flexion-extension (±7.5°) and 2) lateral bending (±6°). Parameters including rotation rate, slider friction, friction between the samples' articulating surfaces, and moment arm were considered to determine their effects on measured kinetic parameters. The sensitivity analysis indicated that all setup parameters except friction between the samples' articulating surfaces had a substantial effect on the results. The findings were then compared to predictions from a free body diagram to determine the optimal setup parameters. Consequently, the setup with the lowest rotation rate and employing passive sliders yielded results that were consistent with the free body diagram. This study demonstrated the significance of a comprehensive setup evaluation for reliable and reproducible testing of spinal implants, also for comparison between labs.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a mechanical characterisation device for intracranial aneurysms: Calibration on polymeric phantom arteries 开发颅内动脉瘤机械特性分析装置:在聚合物模型动脉上进行校准
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-20 DOI: 10.1016/j.medengphy.2024.104225

Intracranial aneurysm is a major health issue related to biomechanical arterial wall degradation. Currently, no method allows predicting rupture risk based on in vivo quantitative mechanical data. This work is part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool, based on the in vivo mechanical characterisation of the aneurysm wall. Thus, the primary objective of the project was to develop a deformation device prototype (DDP) of the artery wall and to calibrate it on polymeric phantom arteries. The deformations induced on the phantom arteries were quantified experimentally using a Digital Image Correlation (DIC) system. The results indicated that the DIC system was able to measure the small displacements generated by the DDP. We also observed that the flow mimicking the blood flow did not significantly disturb the measurements of the artery wall displacement caused by the DDP. Finally, a limit displacement value generated by the DDP was evaluated. This value corresponds to the lowest displacement value detectable by the clinical imaging system that will be tested on animals in the future (Spectral Photon Counting CT).

颅内动脉瘤是一个与动脉壁生物力学退化有关的重大健康问题。目前,还没有一种方法可以根据体内定量机械数据预测破裂风险。这项工作是一个大型项目的一部分,该项目旨在根据动脉瘤壁的活体机械特征,为临床医生提供一种非侵入性、针对特定患者的决策支持工具。因此,该项目的主要目标是开发动脉壁变形装置原型(DDP),并在聚合物模型动脉上进行校准。使用数字图像关联(DIC)系统对模型动脉的变形进行了实验量化。结果表明,DIC 系统能够测量 DDP 产生的微小位移。我们还观察到,模拟血流的流动并没有明显干扰由 DDP 引起的动脉壁位移测量。最后,我们对 DDP 产生的极限位移值进行了评估。该值相当于未来将在动物身上测试的临床成像系统(光谱光子计数 CT)可检测到的最低位移值。
{"title":"Development of a mechanical characterisation device for intracranial aneurysms: Calibration on polymeric phantom arteries","authors":"","doi":"10.1016/j.medengphy.2024.104225","DOIUrl":"10.1016/j.medengphy.2024.104225","url":null,"abstract":"<div><p>Intracranial aneurysm is a major health issue related to biomechanical arterial wall degradation. Currently, no method allows predicting rupture risk based on <em>in vivo</em> quantitative mechanical data. This work is part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool, based on the <em>in vivo</em> mechanical characterisation of the aneurysm wall. Thus, the primary objective of the project was to develop a deformation device prototype (DDP) of the artery wall and to calibrate it on polymeric phantom arteries. The deformations induced on the phantom arteries were quantified experimentally using a Digital Image Correlation (DIC) system. The results indicated that the DIC system was able to measure the small displacements generated by the DDP. We also observed that the flow mimicking the blood flow did not significantly disturb the measurements of the artery wall displacement caused by the DDP. Finally, a limit displacement value generated by the DDP was evaluated. This value corresponds to the lowest displacement value detectable by the clinical imaging system that will be tested on animals in the future (Spectral Photon Counting CT).</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a reduced order model for EVAR planning and intra-operative navigation 建立用于 EVAR 计划和术中导航的减阶模型
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-16 DOI: 10.1016/j.medengphy.2024.104229

Introduction

The pre-operative planning and intra-operative navigation of the endovascular aneurysm repair (EVAR) procedure are currently challenged by the aortic deformations that occur due to the insertion of a stiff guidewire. Hence, a fast and accurate predictive tool may help clinicians in the decision-making process and during surgical navigation, potentially reducing the radiations and contrast dose. To this aim, we generated a reduced order model (ROM) trained on parametric finite element simulations of the aortic wall-guidewire interaction.

Method

A Design of Experiments (DOE) consisting of 300 scenarios was created spanning over seven parameters. Radial basis functions were used to achieve a morphological parametrization of the aortic geometry. The ROM was built using 200 scenarios for training and the remaining 100 for validation.

Results

The developed ROM estimated the displacement of aortic nodes with a relative error below 5.5% for all the considered validation cases. From a preliminary analysis, the aortic elasticity, the stiffness of the guidewire and the tortuosity of the cannulated iliac artery proved to be the most influential parameters.

Conclusions

Once built, the ROM provided almost real-time and accurate estimations of the guidewire-induced aortic displacement field, thus potentially being a promising pre- and intra-operative tool for clinicians.

导言血管内动脉瘤修补术(EVAR)的术前规划和术中导航目前面临着因插入坚硬导丝而导致主动脉变形的挑战。因此,快速准确的预测工具可以帮助临床医生在决策过程和手术导航过程中减少辐射和造影剂剂量。为此,我们在主动脉壁与导丝相互作用的参数化有限元模拟基础上建立了一个经过训练的低阶模型(ROM)。使用径向基函数对主动脉几何形状进行形态参数化。结果在所有考虑的验证案例中,所开发的 ROM 估算的主动脉节点位移的相对误差低于 5.5%。从初步分析来看,主动脉的弹性、导丝的硬度和插管髂动脉的迂曲度被证明是影响最大的参数。结论ROM一旦建立,几乎可以实时准确地估计导丝引起的主动脉位移场,因此有可能成为临床医生的术前和术后工具。
{"title":"Towards a reduced order model for EVAR planning and intra-operative navigation","authors":"","doi":"10.1016/j.medengphy.2024.104229","DOIUrl":"10.1016/j.medengphy.2024.104229","url":null,"abstract":"<div><h3>Introduction</h3><p>The pre-operative planning and intra-operative navigation of the endovascular aneurysm repair (EVAR) procedure are currently challenged by the aortic deformations that occur due to the insertion of a stiff guidewire. Hence, a fast and accurate predictive tool may help clinicians in the decision-making process and during surgical navigation, potentially reducing the radiations and contrast dose. To this aim, we generated a reduced order model (ROM) trained on parametric finite element simulations of the aortic wall-guidewire interaction.</p></div><div><h3>Method</h3><p>A Design of Experiments (DOE) consisting of 300 scenarios was created spanning over seven parameters. Radial basis functions were used to achieve a morphological parametrization of the aortic geometry. The ROM was built using 200 scenarios for training and the remaining 100 for validation.</p></div><div><h3>Results</h3><p>The developed ROM estimated the displacement of aortic nodes with a relative error below 5.5% for all the considered validation cases. From a preliminary analysis, the aortic elasticity, the stiffness of the guidewire and the tortuosity of the cannulated iliac artery proved to be the most influential parameters.</p></div><div><h3>Conclusions</h3><p>Once built, the ROM provided almost real-time and accurate estimations of the guidewire-induced aortic displacement field, thus potentially being a promising pre- and intra-operative tool for clinicians.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324001309/pdfft?md5=e31c28cf4d82238e7951b8a62951ea41&pid=1-s2.0-S1350453324001309-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Medical Engineering & Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1