Jiapeng He , Zhen Pan , Guowei Zhou , Jiangming Yu , Dayong Li
{"title":"Integrated analysis of clinical indicators and mechanical properties in cancellous bone","authors":"Jiapeng He , Zhen Pan , Guowei Zhou , Jiangming Yu , Dayong Li","doi":"10.1016/j.medengphy.2024.104245","DOIUrl":null,"url":null,"abstract":"<div><div>Cancellous bone plays a critical role as a shock absorber in the human skeletal system. Accurate assessment of its microstructure and mechanical properties is crucial for osteoporosis diagnosis and treatment. However, various methods with different indicators are adopted currently in the clinical and laboratory assessments which lead to confusion and inconvenience for cancellous bone analysis. In the current work, correlations among clinical indicators including CT-derived Hounsfield Unit (HU) & bone mineral density (BMD), laboratory indicators (mass density & volume fraction), and mechanical properties (modulus & strength) are explored. The results show that different indicators can be linearly linked through the HU value which can be adopted as a good microstructure indicator of cancellous bone. Additionally, the impacts of cancellous bone specimen preparation on clinical CT imaging and mechanical properties are also investigated. The results indicate common marrow-removal treatment can lead to decrease in mean HU value, deviation in HU value distribution, while it will increase the modulus and strength. The current work provides a valuable insight into the cancellous properties based on comprehensive analysis on the clinical and laboratory assessments which is critical for accurate diagnosis and personalized treatment.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"133 ","pages":"Article 104245"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cancellous bone plays a critical role as a shock absorber in the human skeletal system. Accurate assessment of its microstructure and mechanical properties is crucial for osteoporosis diagnosis and treatment. However, various methods with different indicators are adopted currently in the clinical and laboratory assessments which lead to confusion and inconvenience for cancellous bone analysis. In the current work, correlations among clinical indicators including CT-derived Hounsfield Unit (HU) & bone mineral density (BMD), laboratory indicators (mass density & volume fraction), and mechanical properties (modulus & strength) are explored. The results show that different indicators can be linearly linked through the HU value which can be adopted as a good microstructure indicator of cancellous bone. Additionally, the impacts of cancellous bone specimen preparation on clinical CT imaging and mechanical properties are also investigated. The results indicate common marrow-removal treatment can lead to decrease in mean HU value, deviation in HU value distribution, while it will increase the modulus and strength. The current work provides a valuable insight into the cancellous properties based on comprehensive analysis on the clinical and laboratory assessments which is critical for accurate diagnosis and personalized treatment.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.