A Scalable Dynamic TOT Circuit for a 100 ps TOF-PET Detector Design to Improve Energy Linearity and Dynamic Range

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2023-12-19 DOI:10.1109/TRPMS.2023.3344399
Shirin Pourashraf;Joshua W. Cates;Craig S. Levin
{"title":"A Scalable Dynamic TOT Circuit for a 100 ps TOF-PET Detector Design to Improve Energy Linearity and Dynamic Range","authors":"Shirin Pourashraf;Joshua W. Cates;Craig S. Levin","doi":"10.1109/TRPMS.2023.3344399","DOIUrl":null,"url":null,"abstract":"This article focuses on adapting linearization strategies for annihilation photon energy measurement for a time-of-flight (TOF) positron emission tomography (PET) system that achieves \n<inline-formula> <tex-math>$\\sim 100$ </tex-math></inline-formula>\n picosecond (ps) full-width at half maximum (FWHM) coincidence time resolution (CTR). We have adapted the method of dynamic TOT (DynTOT) for our scalable TOF-PET detector readout electronics to linearize the energy spectra while maintaining \n<inline-formula> <tex-math>$\\sim 100$ </tex-math></inline-formula>\n ps FWHM CTR. The linear response of the resulting DynTOT circuit facilitates improved energy performance compared with conventional time-over-threshold (TOT). Our detector design has the capability to position the 3-D coordinates of one or more 511-keV photon interactions. To facilitate this goal, DynTOT’s linearity across the entire energy range enables accurate measurement of low-energy interactions that is required for more accurate positioning of intercrystal scatter events. This DynTOT block is implemented by off-the-shelf discrete components and consumes only 11 mW power per detector layer unit design comprising 24:1 multiplexed energy and timing channels. We first validated the performance of DynTOT using single \n<inline-formula> <tex-math>$3\\times 3\\times10$ </tex-math></inline-formula>\n mm3 LGSO scintillation crystals side-coupled to arrays of three \n<inline-formula> <tex-math>$3\\times3$ </tex-math></inline-formula>\n mm2 SiPMs which achieved 511-keV photopeak energy resolutions of 13.6 ± 0.4%, 13.0 ± 0.8%, and 17.1 ± 0.6% for conventional pulse height, DynTOT, and conventional TOT methods, respectively. Then, we stretched by roughly 7-fold the DynTOT digital pulses (energy) generated from side-coupling \n<inline-formula> <tex-math>$2\\times4$ </tex-math></inline-formula>\n array of \n<inline-formula> <tex-math>$3\\times 3\\times10$ </tex-math></inline-formula>\n mm3 crystals to 24 SiPMs, and achieved 511-keV photopeak energy resolutions of 11.8 ± 0.7% with a dynamic range from less than 60 to 1274 keV, making that suitable for methods of accurate 3-D positioning of intercrystal-scatter interactions. Moreover, CTR with a highly multiplexed timing circuit was measured using these extended DynTOT pulses for energy gating, resulting in an average 108 ± 1.3 ps FWHM CTR.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10365584/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on adapting linearization strategies for annihilation photon energy measurement for a time-of-flight (TOF) positron emission tomography (PET) system that achieves $\sim 100$ picosecond (ps) full-width at half maximum (FWHM) coincidence time resolution (CTR). We have adapted the method of dynamic TOT (DynTOT) for our scalable TOF-PET detector readout electronics to linearize the energy spectra while maintaining $\sim 100$ ps FWHM CTR. The linear response of the resulting DynTOT circuit facilitates improved energy performance compared with conventional time-over-threshold (TOT). Our detector design has the capability to position the 3-D coordinates of one or more 511-keV photon interactions. To facilitate this goal, DynTOT’s linearity across the entire energy range enables accurate measurement of low-energy interactions that is required for more accurate positioning of intercrystal scatter events. This DynTOT block is implemented by off-the-shelf discrete components and consumes only 11 mW power per detector layer unit design comprising 24:1 multiplexed energy and timing channels. We first validated the performance of DynTOT using single $3\times 3\times10$ mm3 LGSO scintillation crystals side-coupled to arrays of three $3\times3$ mm2 SiPMs which achieved 511-keV photopeak energy resolutions of 13.6 ± 0.4%, 13.0 ± 0.8%, and 17.1 ± 0.6% for conventional pulse height, DynTOT, and conventional TOT methods, respectively. Then, we stretched by roughly 7-fold the DynTOT digital pulses (energy) generated from side-coupling $2\times4$ array of $3\times 3\times10$ mm3 crystals to 24 SiPMs, and achieved 511-keV photopeak energy resolutions of 11.8 ± 0.7% with a dynamic range from less than 60 to 1274 keV, making that suitable for methods of accurate 3-D positioning of intercrystal-scatter interactions. Moreover, CTR with a highly multiplexed timing circuit was measured using these extended DynTOT pulses for energy gating, resulting in an average 108 ± 1.3 ps FWHM CTR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 100 ps TOF-PET 探测器设计的可扩展动态 TOT 电路,可提高能量线性度和动态范围
本文的重点是为飞行时间(TOF)正电子发射断层扫描(PET)系统的湮灭光子能量测量调整线性化策略,该系统可实现 100 皮秒(ps)半最大全宽(FWHM)重合时间分辨率(CTR)。我们为可扩展的 TOF-PET 探测器读出电子装置采用了动态 TOT(DynTOT)方法,在保持 100 皮秒全宽半最大值 CTR 的同时使能谱线性化。与传统的过阈值时间(TOT)相比,DynTOT 电路的线性响应有助于提高能量性能。我们的探测器设计能够定位一个或多个 511-keV 光子相互作用的三维坐标。为了实现这一目标,DynTOT 在整个能量范围内的线性度使其能够精确测量低能量相互作用,而这正是更精确定位晶体间散射事件所需要的。DynTOT 块由现成的分立元件实现,每个探测器层单元设计的功耗仅为 11 mW,包括 24:1 的多路复用能量和定时通道。我们首先验证了 DynTOT 的性能,将单个 3 美元乘 3 美元乘 10 美元 mm3 LGSO 闪烁晶体侧耦合到三个 3 美元乘 3 美元 mm2 SiPM 阵列上,传统脉冲高度、DynTOT 和传统 TOT 方法的 511-keV 光峰能量分辨率分别为 13.6 ± 0.4%、13.0 ± 0.8% 和 17.1 ± 0.6%。然后,我们将侧向耦合 2/times4$ 阵列的 3/times 3/times10$ mm3 晶体产生的 DynTOT 数字脉冲(能量)拉伸了约 7 倍至 24 SiPM,实现了 11.8 ± 0.7% 的 511-keV 光峰能量分辨率,动态范围从小于 60 到 1274 keV,使其适用于晶体间散射相互作用的精确三维定位方法。此外,利用这些用于能量门控的扩展 DynTOT 脉冲,测量了具有高度多路复用定时电路的 CTR,结果是平均 108 ± 1.3 ps FWHM CTR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents Introducing IEEE Collabratec IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Member Get-a-Member (MGM) Program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1