Molecular Deformation Is a Key Factor in Screening Aggregation Inhibitor for Intrinsically Disordered Protein Tau

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-03-05 DOI:10.1021/acscentsci.3c01196
Keke Chai, Jian Yang, Ying Tu, Junjie Wu, Kang Fang, Shuo Shi and Tianming Yao*, 
{"title":"Molecular Deformation Is a Key Factor in Screening Aggregation Inhibitor for Intrinsically Disordered Protein Tau","authors":"Keke Chai,&nbsp;Jian Yang,&nbsp;Ying Tu,&nbsp;Junjie Wu,&nbsp;Kang Fang,&nbsp;Shuo Shi and Tianming Yao*,&nbsp;","doi":"10.1021/acscentsci.3c01196","DOIUrl":null,"url":null,"abstract":"<p >Direct inhibitor of tau aggregation has been extensively studied as potential therapeutic agents for Alzheimer’s disease. However, the natively unfolded structure of tau complicates the structure-based ligand design, and the relatively large surface areas that mediate tau–tau interactions in aggregation limit the potential for identifying high-affinity ligand binding sites. Herein, a group of isatin-pyrrolidinylpyridine derivative isomers (IPP1–IPP4) were designed and synthesized. They are like different forms of molecular “transformers”. These isatin isomers exhibit different inhibitory effects on tau self-aggregation or even possess a depolymerizing effect. Our results revealed for the first time that the direct inhibitor of tau protein aggregation is not only determined by the previously reported conjugated structure, substituent, hydrogen bond donor, etc. but also depends more importantly on the molecular shape. In combination with molecular docking and molecular dynamics simulations, a new inhibition mechanism was proposed: like a “molecular clip”, IPP1 could noncovalently bind and fix a tau polypeptide chain at a multipoint to prevent the transition from the “natively unfolded conformation” to the “aggregation competent conformation” before nucleation. At the cellular and animal levels, the effectiveness of the inhibitor of the IPP1 has been confirmed, providing an innovative design strategy as well as a lead compound for Alzheimer’s disease drug development.</p><p >We propose that molecular deformation is a key factor in the screening aggregation inhibitor for intrinsic disordered protein tau. We designed and synthesized four isomers with different shapes by a modular combination of isatin and pyrrolidinylpyridine and verified that they have different binding abilities to tau and inhibitory activities against tau aggregation. Our results will provide a new direction for developing a tau aggregation inhibitor.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.3c01196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.3c01196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct inhibitor of tau aggregation has been extensively studied as potential therapeutic agents for Alzheimer’s disease. However, the natively unfolded structure of tau complicates the structure-based ligand design, and the relatively large surface areas that mediate tau–tau interactions in aggregation limit the potential for identifying high-affinity ligand binding sites. Herein, a group of isatin-pyrrolidinylpyridine derivative isomers (IPP1–IPP4) were designed and synthesized. They are like different forms of molecular “transformers”. These isatin isomers exhibit different inhibitory effects on tau self-aggregation or even possess a depolymerizing effect. Our results revealed for the first time that the direct inhibitor of tau protein aggregation is not only determined by the previously reported conjugated structure, substituent, hydrogen bond donor, etc. but also depends more importantly on the molecular shape. In combination with molecular docking and molecular dynamics simulations, a new inhibition mechanism was proposed: like a “molecular clip”, IPP1 could noncovalently bind and fix a tau polypeptide chain at a multipoint to prevent the transition from the “natively unfolded conformation” to the “aggregation competent conformation” before nucleation. At the cellular and animal levels, the effectiveness of the inhibitor of the IPP1 has been confirmed, providing an innovative design strategy as well as a lead compound for Alzheimer’s disease drug development.

We propose that molecular deformation is a key factor in the screening aggregation inhibitor for intrinsic disordered protein tau. We designed and synthesized four isomers with different shapes by a modular combination of isatin and pyrrolidinylpyridine and verified that they have different binding abilities to tau and inhibitory activities against tau aggregation. Our results will provide a new direction for developing a tau aggregation inhibitor.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子变形是筛选本质紊乱蛋白 Tau 聚合抑制剂的关键因素
作为阿尔茨海默病的潜在治疗药物,对 tau 聚合的直接抑制剂进行了广泛的研究。然而,tau 的原生展开结构使基于结构的配体设计变得复杂,而且在聚集过程中介导 tau-tau 相互作用的相对较大的表面积限制了确定高亲和力配体结合位点的潜力。在此,我们设计并合成了一组异汀-吡咯烷基吡啶衍生物异构体(IPP1-IPP4)。它们就像不同形式的分子 "变压器"。这些异构体对 tau 的自我聚集具有不同的抑制作用,甚至具有解聚作用。我们的研究结果首次揭示了对 tau 蛋白聚集的直接抑制作用不仅取决于之前报道的共轭结构、取代基、氢键供体等,更重要的是取决于分子形状。结合分子对接和分子动力学模拟,我们提出了一种新的抑制机制:IPP1 就像一个 "分子夹",可以非共价地在多点上结合并固定 tau 多肽链,从而阻止其在成核前从 "原生展开构象 "过渡到 "聚集能力构象"。在细胞和动物水平上,IPP1 抑制剂的有效性已得到证实,为阿尔茨海默氏症药物开发提供了一种创新的设计策略和先导化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Spatial Visualization of A-to-I Editing in Cells Using Endonuclease V Immunostaining Assay (EndoVIA) Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin A Novel Prodrug Strategy Based on Reversibly Degradable Guanidine Imides for High Oral Bioavailability and Prolonged Pharmacokinetics of Broad-Spectrum Anti-influenza Agents Correction to “A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting” A Conversation with Rob Jackson
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1