{"title":"The effect of Typhoon Kalmaegi on the modal energy and period of internal waves near the Dongsha Islands (South China Sea)","authors":"Rongwei Zhai, Guiying Chen, Chenjing Shang, Xiaodong Shang, Youren Zheng","doi":"10.1007/s13131-023-2205-7","DOIUrl":null,"url":null,"abstract":"<p>The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data. We observed, for the first time, that the phenomenon of regular variation characteristics of the 14-d spring-neap cycle of diurnal internal tides (ITs) can be regulated by typhoons. The diurnal ITs lost the regular variation characteristics of the 14-d spring-neap cycle during the typhoon period owing to the weakening of diurnal coherent ITs, represented by O<sub>1</sub> and K<sub>1</sub>, and the strengthening of diurnal incoherent ITs. Results of quantitative analysis showed that during the pre-typhoon period, time-averaged modal kinetic energy (sum of Modes 1–5) of near-inertial internal waves (NIWs) and diurnal and semidiurnal ITs were 0.62 kJ/m<sup>2</sup>, 5.66 kJ/m<sup>2</sup>, and 1.48 kJ/m<sup>2</sup>, respectively. However, during the typhoon period, the modal kinetic energy of NIWs increased 5.11 times, mainly due to the increase in high-mode kinetic energy. At the same time, the modal kinetic energy of diurnal and semidiurnal ITs was reduced by 68.9% and 20%, respectively, mainly due to the decrease in low-mode kinetic energy. The significantly reduced diurnal ITs during the typhoon period could be due to: (1) strong nonlinear interaction between diurnal ITs and NIWs, and (2) a higher proportion of high-mode diurnal ITs during the typhoon period, leading to more energy dissipation.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"39 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2205-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data. We observed, for the first time, that the phenomenon of regular variation characteristics of the 14-d spring-neap cycle of diurnal internal tides (ITs) can be regulated by typhoons. The diurnal ITs lost the regular variation characteristics of the 14-d spring-neap cycle during the typhoon period owing to the weakening of diurnal coherent ITs, represented by O1 and K1, and the strengthening of diurnal incoherent ITs. Results of quantitative analysis showed that during the pre-typhoon period, time-averaged modal kinetic energy (sum of Modes 1–5) of near-inertial internal waves (NIWs) and diurnal and semidiurnal ITs were 0.62 kJ/m2, 5.66 kJ/m2, and 1.48 kJ/m2, respectively. However, during the typhoon period, the modal kinetic energy of NIWs increased 5.11 times, mainly due to the increase in high-mode kinetic energy. At the same time, the modal kinetic energy of diurnal and semidiurnal ITs was reduced by 68.9% and 20%, respectively, mainly due to the decrease in low-mode kinetic energy. The significantly reduced diurnal ITs during the typhoon period could be due to: (1) strong nonlinear interaction between diurnal ITs and NIWs, and (2) a higher proportion of high-mode diurnal ITs during the typhoon period, leading to more energy dissipation.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.