Synthesizing high-resolution satellite salinity data based on multi-fractal fusion

IF 1.4 3区 地球科学 Q3 OCEANOGRAPHY Acta Oceanologica Sinica Pub Date : 2024-09-17 DOI:10.1007/s13131-023-2209-3
Hengqian Yan, Jian Shi, Ren Zhang, Wangjiang Hu, Yongchui Zhang, Mei Hong
{"title":"Synthesizing high-resolution satellite salinity data based on multi-fractal fusion","authors":"Hengqian Yan, Jian Shi, Ren Zhang, Wangjiang Hu, Yongchui Zhang, Mei Hong","doi":"10.1007/s13131-023-2209-3","DOIUrl":null,"url":null,"abstract":"<p>The spaceborne platform has unprecedently provided the global eddy-permitting (typically about 0.25°) products of sea surface salinity (SSS), however the existing SSS products can hardly resolve mesoscale motions due to the heavy noises therein and the over-smoothing in denoising processes. By means of the multi-fractal fusion (MFF), the high-resolution SSS product is synthesized with the template of sea surface temperature (SST). Two low-resolution SSS products and four SST products are considered as the source data and the templates respectively to determine the best combination. The fused products are validated by the <i>in situ</i> observations and intercompared via SSS maps, Singularity Exponent maps and wavenumber spectra. The results demonstrate that the MFF can perform a good work in mitigating the noises and improving the resolution. The combination of the climate change initiative SSS and the remote sensing system SST can produce the 0.1° denoised product whose global mean standard derivation of salinity against Argo is 0.21 and the feature resolution can reach 30–40 km.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2209-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The spaceborne platform has unprecedently provided the global eddy-permitting (typically about 0.25°) products of sea surface salinity (SSS), however the existing SSS products can hardly resolve mesoscale motions due to the heavy noises therein and the over-smoothing in denoising processes. By means of the multi-fractal fusion (MFF), the high-resolution SSS product is synthesized with the template of sea surface temperature (SST). Two low-resolution SSS products and four SST products are considered as the source data and the templates respectively to determine the best combination. The fused products are validated by the in situ observations and intercompared via SSS maps, Singularity Exponent maps and wavenumber spectra. The results demonstrate that the MFF can perform a good work in mitigating the noises and improving the resolution. The combination of the climate change initiative SSS and the remote sensing system SST can produce the 0.1° denoised product whose global mean standard derivation of salinity against Argo is 0.21 and the feature resolution can reach 30–40 km.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多分形融合的高分辨率卫星盐度数据合成
空间平台已经前所未有地提供了全球允许涡度(通常约为 0.25°)的海面盐度(SSS)产品,然而,由于其中存在大量噪声以及去噪过程中的过度平滑,现有的 SSS 产品很难分辨中尺度运动。通过多分形融合(MFF)技术,以海面温度(SST)为模板合成了高分辨率 SSS 产品。两个低分辨率 SSS 产品和四个 SST 产品分别作为源数据和模板,以确定最佳组合。融合后的产品经现场观测验证,并通过 SSS 图、奇异指数图和波数谱进行相互比较。结果表明,MFF 可以很好地降低噪声和提高分辨率。气候变化倡议 SSS 与遥感系统 SST 的结合可产生 0.1° 去噪产品,其盐度对 Argo 的全球平均标准推导为 0.21,特征分辨率可达 30-40 千米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Oceanologica Sinica
Acta Oceanologica Sinica 地学-海洋学
CiteScore
2.50
自引率
7.10%
发文量
3884
审稿时长
9 months
期刊介绍: Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal. The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences. It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.
期刊最新文献
Evaluation and projection of marine heatwaves in the South China Sea: insights from CMIP6 multi-model ensemble Potential morphological responses of an artificial beach to a flood in extreme events: field observation and numerical modelling Alleviated photoinhibition on nitrification in the Indian Sector of the Southern Ocean Synthesizing high-resolution satellite salinity data based on multi-fractal fusion Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1