Tyrosinase from the pulps of local cultivars of Musa spp: Purification, characterization, immobilization, and application in the batch production of l-3,4-dihydroxyphenylalanine.
Muinat Moronke Adeyanju, Adedeji Nelson Ademakinwa
{"title":"Tyrosinase from the pulps of local cultivars of <i>Musa spp:</i> Purification, characterization, immobilization, and application in the batch production of l-3,4-dihydroxyphenylalanine.","authors":"Muinat Moronke Adeyanju, Adedeji Nelson Ademakinwa","doi":"10.1080/10826068.2024.2324084","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosinase, an enzyme involved in browning reactions in plants/crops exposed to mechanical injury, was isolated from the pulp of some different locally available bananas (<i>M. cavendish</i>, <i>M. acuminata</i>, and <i>M. paradisiaca</i>). Tyrosinase from the pulps was extracted, purified, immobilized, and characterized. Thereafter, the potentials of the immobilized tyrosinase in the possible production of l-3,4-dihydroxyphenylalanine (L-DOPA) in an improvised batch reactor was exploited using tyrosine and ascorbate as the substrates. L-DOPA production was monitored via thin-layer chromatography and spectrophotometry (Arnow's method). L-DOPA is a drug that is used in the treatment of Parkinson's disease. Hence, this study exploited a non-chemical route for its synthesis using the tyrosinase obtained from the banana pulps. The purified tyrosinase had an optimum pH and temperature of 6.5 and 7.0, respectively. The molecular weight of the purified tyrosinase was 45 kDa. Quercetin and resorcinol both competitively inhibited the purified tyrosinase from the three cultivars. Immobilized <i>M. cavendish</i> tyrosinase produced the highest concentration (0.60 mM) of L-DOPA after 8 h in an improvised batch reactor. The tyrosinase in the banana pulps serves as a cheap and readily available green route for the possible production of L-DOPA.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1098-1105"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2324084","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Tyrosinase, an enzyme involved in browning reactions in plants/crops exposed to mechanical injury, was isolated from the pulp of some different locally available bananas (M. cavendish, M. acuminata, and M. paradisiaca). Tyrosinase from the pulps was extracted, purified, immobilized, and characterized. Thereafter, the potentials of the immobilized tyrosinase in the possible production of l-3,4-dihydroxyphenylalanine (L-DOPA) in an improvised batch reactor was exploited using tyrosine and ascorbate as the substrates. L-DOPA production was monitored via thin-layer chromatography and spectrophotometry (Arnow's method). L-DOPA is a drug that is used in the treatment of Parkinson's disease. Hence, this study exploited a non-chemical route for its synthesis using the tyrosinase obtained from the banana pulps. The purified tyrosinase had an optimum pH and temperature of 6.5 and 7.0, respectively. The molecular weight of the purified tyrosinase was 45 kDa. Quercetin and resorcinol both competitively inhibited the purified tyrosinase from the three cultivars. Immobilized M. cavendish tyrosinase produced the highest concentration (0.60 mM) of L-DOPA after 8 h in an improvised batch reactor. The tyrosinase in the banana pulps serves as a cheap and readily available green route for the possible production of L-DOPA.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.