Enhancing the production of L-proline in recombinant Escherichia coli BL21 by metabolic engineering.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Preparative Biochemistry & Biotechnology Pub Date : 2024-07-10 DOI:10.1080/10826068.2024.2378104
Jiajie Lu, Bing Fu, Zhiwen Zhu, Chuyang Yan, Fuyao Guan, Peize Wang, Ping Yu
{"title":"Enhancing the production of L-proline in recombinant <i>Escherichia coli</i> BL21 by metabolic engineering.","authors":"Jiajie Lu, Bing Fu, Zhiwen Zhu, Chuyang Yan, Fuyao Guan, Peize Wang, Ping Yu","doi":"10.1080/10826068.2024.2378104","DOIUrl":null,"url":null,"abstract":"<p><p>L-proline is widely used in the fields of food, medicine and agriculture, and is also an important raw material for the synthesis of trans-4-hydroxy-L-proline. In this study, enhancing the production of L-proline by metabolic engineering was investigated. Three genes, <i>proB</i>, <i>proA</i> and <i>proC</i>, were introduced into <i>Escherichia coli</i> BL21 by molecular biology technology to increase the metabolic flow of L-proline from glucose. The genes <i>putP</i> and <i>proP</i> related to the proline transfer were knocked out by CRISPR/Cas9 gene editing technology to weaken the feedback inhibition of <i>proB</i> to increase the production of L-proline. The fermentation curves of the engineered strain at different glucose concentrations were determined, and a glucose concentration of 10 g/L was chosen to expand the batch culture to 1 L shake flask. Ultimately, through these efforts, the titer of L-proline reached 832.19 mg/L in intermittent glucose addition fermentation in a 1 L shake flask.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-9"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2378104","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

L-proline is widely used in the fields of food, medicine and agriculture, and is also an important raw material for the synthesis of trans-4-hydroxy-L-proline. In this study, enhancing the production of L-proline by metabolic engineering was investigated. Three genes, proB, proA and proC, were introduced into Escherichia coli BL21 by molecular biology technology to increase the metabolic flow of L-proline from glucose. The genes putP and proP related to the proline transfer were knocked out by CRISPR/Cas9 gene editing technology to weaken the feedback inhibition of proB to increase the production of L-proline. The fermentation curves of the engineered strain at different glucose concentrations were determined, and a glucose concentration of 10 g/L was chosen to expand the batch culture to 1 L shake flask. Ultimately, through these efforts, the titer of L-proline reached 832.19 mg/L in intermittent glucose addition fermentation in a 1 L shake flask.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过代谢工程提高重组大肠杆菌 BL21 中 L-脯氨酸的产量。
L-脯氨酸广泛应用于食品、医药和农业领域,也是合成反式-4-羟基-L-脯氨酸的重要原料。本研究探讨了通过代谢工程提高 L-脯氨酸产量的方法。通过分子生物学技术将 proB、proA 和 proC 三个基因导入到大肠杆菌 BL21 中,以增加葡萄糖产生 L-脯氨酸的代谢流量。通过CRISPR/Cas9基因编辑技术敲除与脯氨酸转移相关的基因putP和proP,以削弱proB的反馈抑制作用,从而提高L-脯氨酸的产量。测定了工程菌株在不同葡萄糖浓度下的发酵曲线,并选择葡萄糖浓度为 10 g/L,将批量培养扩大到 1 L 摇瓶。最终,通过这些努力,在 1 升摇瓶中间歇添加葡萄糖的发酵过程中,L-脯氨酸的滴度达到了 832.19 mg/L。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
期刊最新文献
Pectinase immobilized on magnetic nanoparticles coated with alginate for pectin hydrolysis in guava juice assisted by a stirred electromagnetic reactor. Convenient production of a novel recombinant antibody against periodontitis biomarker S100A8. Hybrid magnetic nanocomposites of arginine deiminase with improved stability and recyclability for biomedical applications. Cellulase immobilization on nano-chitosan/chromium metal-organic framework hybrid matrix for efficient conversion of lignocellulosic biomass to glucose. The effect of different light spectra on selenium bioaccumulation by Spirulina platensis cyanobacteria in flat plate photobioreactors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1