Metabolic engineering and fermentation of microorganisms for carotenoids production

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-03-05 DOI:10.1016/j.copbio.2024.103104
Hyunmin Eun , Sang Yup Lee
{"title":"Metabolic engineering and fermentation of microorganisms for carotenoids production","authors":"Hyunmin Eun ,&nbsp;Sang Yup Lee","doi":"10.1016/j.copbio.2024.103104","DOIUrl":null,"url":null,"abstract":"<div><p>Carotenoids are natural pigments that exhibit a wide range of red, orange, and yellow colors and are extensively used in the food, nutraceuticals, cosmetics, and aquaculture industries. While advances in systems metabolic engineering have established a foundation for constructing carotenoid-producing microbial cell factories at a laboratory scale, translating these technologies to industrial scales remains a big challenge. Moreover, there is a need to devise cost-effective methods for downstream processing and purification of carotenoids. In this review, we discuss recent strategies in metabolic engineering, such as metabolic flux optimization, enzyme assembly, and storage capacity engineering, aimed at constructing high-performance carotenoid-producing microbial strains. We also review recent approaches for cost-effective downstream processing and purification of carotenoids.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103104"},"PeriodicalIF":7.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000405","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Carotenoids are natural pigments that exhibit a wide range of red, orange, and yellow colors and are extensively used in the food, nutraceuticals, cosmetics, and aquaculture industries. While advances in systems metabolic engineering have established a foundation for constructing carotenoid-producing microbial cell factories at a laboratory scale, translating these technologies to industrial scales remains a big challenge. Moreover, there is a need to devise cost-effective methods for downstream processing and purification of carotenoids. In this review, we discuss recent strategies in metabolic engineering, such as metabolic flux optimization, enzyme assembly, and storage capacity engineering, aimed at constructing high-performance carotenoid-producing microbial strains. We also review recent approaches for cost-effective downstream processing and purification of carotenoids.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢工程和发酵微生物生产类胡萝卜素
类胡萝卜素是一种天然色素,可呈现多种红色、橙色和黄色,被广泛应用于食品、保健品、化妆品和水产养殖业。虽然系统代谢工程的进步为在实验室规模上构建类胡萝卜素生产微生物细胞工厂奠定了基础,但将这些技术转化为工业规模仍是一个巨大的挑战。此外,还需要为类胡萝卜素的下游加工和纯化设计具有成本效益的方法。在这篇综述中,我们讨论了代谢工程的最新策略,如代谢通量优化、酶组装和储存能力工程,旨在构建高性能类胡萝卜素生产微生物菌株。我们还回顾了具有成本效益的类胡萝卜素下游加工和纯化的最新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
Toward a circular nitrogen bioeconomy: integrating nitrogen bioconcentration, separations, and high-value products for nitrogen recovery Tissue engineering in the agri-food industry: current status, socio-economic overview and regulatory compliance A biotechnological perspective on sand filtration for drinking water production National phosphorus planning for food and environmental security Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1