Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-11-05 DOI:10.1016/j.copbio.2024.103223
Anna Mei , Kevin P Letscher , Sai Reddy
{"title":"Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants","authors":"Anna Mei ,&nbsp;Kevin P Letscher ,&nbsp;Sai Reddy","doi":"10.1016/j.copbio.2024.103223","DOIUrl":null,"url":null,"abstract":"<div><div>Chimeric antigen receptor (CAR) T cells are a powerful treatment against hematologic cancers. The functional phenotype of a CAR-T cell is influenced by the domains that comprise the synthetic receptor. Typically, the potency of therapeutic CAR-T cell candidates is assessed by preclinical functional assays and mouse models (i.e. human tumor xenografts). However, to date, only a few sets of domains (e.g. CD8, CD28, 41BB) have been extensively tested in preclinical assays and human clinical studies. To characterize the efficiency of a CAR, different assays have been utilized to analyze T cell phenotypes, such as expansion, cytotoxicity, secretome, and persistence. However, each of these previous studies evaluated the importance of an assay differently, resulting in a wide range of functionally diverse CARs. In this review, we highlight recent (high-throughput) methods to analyze CAR domains and demonstrate their impact on inducing T cell phenotypes and activity. We also describe advances in computational methods and their potential for identifying CAR variants with enhanced properties. Finally, we reflect on the need for a standardized scoring system to support the clinical development of next-generation CARs.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"90 ","pages":"Article 103223"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric antigen receptor (CAR) T cells are a powerful treatment against hematologic cancers. The functional phenotype of a CAR-T cell is influenced by the domains that comprise the synthetic receptor. Typically, the potency of therapeutic CAR-T cell candidates is assessed by preclinical functional assays and mouse models (i.e. human tumor xenografts). However, to date, only a few sets of domains (e.g. CD8, CD28, 41BB) have been extensively tested in preclinical assays and human clinical studies. To characterize the efficiency of a CAR, different assays have been utilized to analyze T cell phenotypes, such as expansion, cytotoxicity, secretome, and persistence. However, each of these previous studies evaluated the importance of an assay differently, resulting in a wide range of functionally diverse CARs. In this review, we highlight recent (high-throughput) methods to analyze CAR domains and demonstrate their impact on inducing T cell phenotypes and activity. We also describe advances in computational methods and their potential for identifying CAR variants with enhanced properties. Finally, we reflect on the need for a standardized scoring system to support the clinical development of next-generation CARs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下一代嵌合抗原受体-T 细胞工程:设计和筛选新型嵌合抗原受体变体的最新突破和仍然面临的挑战。
嵌合抗原受体(CAR)T 细胞是一种治疗血液癌症的有效方法。CAR-T 细胞的功能表型受合成受体结构域的影响。通常,临床前功能测定和小鼠模型(即人类肿瘤异种移植)可评估候选 CAR-T 治疗细胞的效力。然而,迄今为止,只有少数几个结构域(如 CD8、CD28、41BB)在临床前试验和人体临床研究中进行了广泛测试。为了描述 CAR 的效率,人们采用了不同的检测方法来分析 T 细胞的表型,如扩增、细胞毒性、分泌组和持久性。然而,以往的这些研究对检测方法重要性的评估各不相同,因此产生了多种功能各异的 CAR。在这篇综述中,我们重点介绍了最近分析 CAR 结构域的(高通量)方法,并展示了它们对诱导 T 细胞表型和活性的影响。我们还介绍了计算方法的进展及其在鉴定具有增强特性的 CAR 变体方面的潜力。最后,我们探讨了建立标准化评分系统以支持下一代 CAR 临床开发的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
A biotechnological perspective on sand filtration for drinking water production National phosphorus planning for food and environmental security Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants Review: can bioelectrochemical sensors be used to monitor soil microbiome activity and fertility? Engineering T-cell receptor–like antibodies for biologics and cell therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1