Building forests for the future

IF 4 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Food and Energy Security Pub Date : 2024-03-06 DOI:10.1002/fes3.518
A. Robert MacKenzie, Sami Ullah, Christine H. Foyer
{"title":"Building forests for the future","authors":"A. Robert MacKenzie,&nbsp;Sami Ullah,&nbsp;Christine H. Foyer","doi":"10.1002/fes3.518","DOIUrl":null,"url":null,"abstract":"<p>Many governments have set ambitious targets for tree planting and increased woodland cover as a key part of actions to reach net-zero carbon emissions by 2050. However, many uncertainties remain concerning how and where to expand tree cover, what species to plant, and how best to manage new plantations. Much contemporary forestry has been based on even-aged monocultures, largely because of perceived advantages for timber production. However, in order to play a key role in climate change mitigation future forests will have to achieve timber production (and wider ecosystem service provision) alongside resilience to biotic and abiotic challenge. It is therefore crucial that appropriate informed decisions are made with regard to the structure, composition, and planning of future forests, in order to provide sustainable solutions that provide environmental, economic, and health benefits to society. Genetically diverse, mixed, and irregular forests, with their higher biodiversity and niche complementarity, are promising new forest configurations for regulating the water cycle, storing carbon, and delivering other goods and services. In the following discussion, we have used UK information to illustrate the benefits of mixed woodland versus monocultures and highlighted current issues related to government initiatives and policies for current and future forests. However, similar issues and problems are encountered globally.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.518","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.518","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many governments have set ambitious targets for tree planting and increased woodland cover as a key part of actions to reach net-zero carbon emissions by 2050. However, many uncertainties remain concerning how and where to expand tree cover, what species to plant, and how best to manage new plantations. Much contemporary forestry has been based on even-aged monocultures, largely because of perceived advantages for timber production. However, in order to play a key role in climate change mitigation future forests will have to achieve timber production (and wider ecosystem service provision) alongside resilience to biotic and abiotic challenge. It is therefore crucial that appropriate informed decisions are made with regard to the structure, composition, and planning of future forests, in order to provide sustainable solutions that provide environmental, economic, and health benefits to society. Genetically diverse, mixed, and irregular forests, with their higher biodiversity and niche complementarity, are promising new forest configurations for regulating the water cycle, storing carbon, and delivering other goods and services. In the following discussion, we have used UK information to illustrate the benefits of mixed woodland versus monocultures and highlighted current issues related to government initiatives and policies for current and future forests. However, similar issues and problems are encountered globally.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为未来建设森林
作为到 2050 年实现碳净零排放行动的重要组成部分,许多国家的政府都制定了植树造林和增加林地覆盖率的宏伟目标。然而,在如何扩大树木覆盖面积、在何处扩大树木覆盖面积、种植什么树种以及如何最好地管理新的植树造林方面,仍然存在许多不确定因素。当代林业大多以均匀树龄的单一树种为基础,这主要是因为人们认为单一树种在木材生产方面具有优势。然而,为了在减缓气候变化方面发挥关键作用,未来的森林在实现木材生产(以及提供更广泛的生态系统服务)的同时,还必须具备抵御生物和非生物挑战的能力。因此,就未来森林的结构、组成和规划做出适当的知情决策至关重要,以便提供可持续的解决方案,为社会带来环境、经济和健康方面的益处。基因多样化、混交和不规则森林具有更高的生物多样性和生态位互补性,是调节水循环、储存碳和提供其他产品和服务的有前途的新森林配置。在下面的讨论中,我们利用英国的资料来说明混交林地与单一林地的好处,并强调了与政府对当前和未来森林的倡议和政策有关的当前问题。然而,全球都会遇到类似的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Energy Security
Food and Energy Security Energy-Renewable Energy, Sustainability and the Environment
CiteScore
9.30
自引率
4.00%
发文量
76
审稿时长
19 weeks
期刊介绍: Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor. Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights. Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge. Examples of areas covered in Food and Energy Security include: • Agronomy • Biotechnological Approaches • Breeding & Genetics • Climate Change • Quality and Composition • Food Crops and Bioenergy Feedstocks • Developmental, Physiology and Biochemistry • Functional Genomics • Molecular Biology • Pest and Disease Management • Post Harvest Biology • Soil Science • Systems Biology
期刊最新文献
Does Adoption of Multiple Climate-Smart Agriculture Practices Improve Rural Farm Households' Food Security in Ethiopia? Food Security Status and Associated Drivers Among Climate Migrant Households in Bangladesh: Insight From Urban Informal Settlements Respective Advantages of Growing Different Green Manure With Nitrogen Fertilization in Cotton-Based Cropping Systems: Insights From a Three-Year Field Study Assessment of Sustainability in the Supply Chain of Sweet Red Pepper Paste Production With Exergy and Life Cycle Analyses Wheat Straw Incorporation Coupled With Direct Seeding Method Influence Nitrogen Uptake and Translocation in Rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1