Anna De Vetter, Chao Song, Martin Mičica, Jerome Tignon, Juliette Mangeney, José Palomo, Sukhdeep Dhillon
{"title":"Large area Terahertz digitated photoconductive antennas based on a single high resistivity metal and nanoplasmonic electrode","authors":"Anna De Vetter, Chao Song, Martin Mičica, Jerome Tignon, Juliette Mangeney, José Palomo, Sukhdeep Dhillon","doi":"10.1016/j.photonics.2024.101248","DOIUrl":null,"url":null,"abstract":"<div><p>Optical excited photoconductive antennas are a central technology for the Terahertz (THz) domain, crucial for both emitting and detecting THz radiation. This work proposes and experimentally realises a new approach in digitated photoconductive antennas (d-PCAs) based on a single digitated high resistivity metal contact with integrated resistances as voltage dividers. This permits a uniform applied electric field over a large surface area and a single step device processing procedure, simplifying the device realisation. This concept is further combined with digitated plasmonic nano-antennas that permits to enhance the light-matter interaction. Through femtosecond optical excitation of such structures, THz pulses can be generated efficiently through this device. Further, for the plasmonic d-PCA, the detected THz electric field of the device shows the effect of polarisation of the incident IR beam, highlighting the role of the nanostructured digitated contacts. This work is supported by electromagnetic simulations showing the optical and THz response of this new type of photoconductive antenna with integrated resistances.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000233/pdfft?md5=0f202330482ff99c3eaa93fdc5c841b3&pid=1-s2.0-S1569441024000233-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000233","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical excited photoconductive antennas are a central technology for the Terahertz (THz) domain, crucial for both emitting and detecting THz radiation. This work proposes and experimentally realises a new approach in digitated photoconductive antennas (d-PCAs) based on a single digitated high resistivity metal contact with integrated resistances as voltage dividers. This permits a uniform applied electric field over a large surface area and a single step device processing procedure, simplifying the device realisation. This concept is further combined with digitated plasmonic nano-antennas that permits to enhance the light-matter interaction. Through femtosecond optical excitation of such structures, THz pulses can be generated efficiently through this device. Further, for the plasmonic d-PCA, the detected THz electric field of the device shows the effect of polarisation of the incident IR beam, highlighting the role of the nanostructured digitated contacts. This work is supported by electromagnetic simulations showing the optical and THz response of this new type of photoconductive antenna with integrated resistances.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.