{"title":"224-fs soliton pulses generation at 1μm from ytterbium-doped fiber laser with CoTe2 nanosheets as an ultrafast modulator","authors":"","doi":"10.1016/j.photonics.2024.101324","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal ditellurides (TMDTs) have numerous attractive properties, making them suitable for a wide range of applications. In this study, cobalt ditelluride (CoTe<sub>2</sub>) nanosheets, a promising TMDT for photonic applications, were prepared using an ultrasound-enhanced liquid phase exfoliation (LPE) method. A novel saturable absorber (SA) employing CoTe<sub>2</sub> nanosheets was then fabricated by optically depositing them on microfiber. The nonlinear optical modulation properties of the CoTe<sub>2</sub> SA were investigated. A high-performance 1 μm ultrafast fiber laser was demonstrated by incorporating newly developed CoTe<sub>2</sub> nanosheets-based SA in a ring cavity ytterbium-doped fiber laser (YDFL). The dynamical behaviour of the proposed passively mode-locked YDFL in response to variations in pump optical power was investigated. The findings reveal that the device achieved a modulation depth of 2.5 %, and saturation light intensity of 30.6 MW/cm<sup>2</sup>. Moreover, a stable and robust mode-locked soliton optical pulse sequence with a fundamental repetition frequency of 3.089 MHz, and a pulse duration of 224 fs was generated at 1032 nm. The proposed YDFL, being all-fiber, compact, and cost-effective, is set to find extensive applications in various domains, including optical fiber communication, sensing, and biomedical imaging.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000993","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal ditellurides (TMDTs) have numerous attractive properties, making them suitable for a wide range of applications. In this study, cobalt ditelluride (CoTe2) nanosheets, a promising TMDT for photonic applications, were prepared using an ultrasound-enhanced liquid phase exfoliation (LPE) method. A novel saturable absorber (SA) employing CoTe2 nanosheets was then fabricated by optically depositing them on microfiber. The nonlinear optical modulation properties of the CoTe2 SA were investigated. A high-performance 1 μm ultrafast fiber laser was demonstrated by incorporating newly developed CoTe2 nanosheets-based SA in a ring cavity ytterbium-doped fiber laser (YDFL). The dynamical behaviour of the proposed passively mode-locked YDFL in response to variations in pump optical power was investigated. The findings reveal that the device achieved a modulation depth of 2.5 %, and saturation light intensity of 30.6 MW/cm2. Moreover, a stable and robust mode-locked soliton optical pulse sequence with a fundamental repetition frequency of 3.089 MHz, and a pulse duration of 224 fs was generated at 1032 nm. The proposed YDFL, being all-fiber, compact, and cost-effective, is set to find extensive applications in various domains, including optical fiber communication, sensing, and biomedical imaging.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.