The Future Landscape and Framework of Precision Nutrition

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-11-01 DOI:10.1016/j.eng.2024.01.020
Tianshu Han , Wei Wei , Wenbo Jiang , Yiding Geng , Zijie Liu , Ruiming Yang , Chenrun Jin , Yating Lei , Xinyi Sun , Jiaxu Xu , Juan Chen , Changhao Sun
{"title":"The Future Landscape and Framework of Precision Nutrition","authors":"Tianshu Han ,&nbsp;Wei Wei ,&nbsp;Wenbo Jiang ,&nbsp;Yiding Geng ,&nbsp;Zijie Liu ,&nbsp;Ruiming Yang ,&nbsp;Chenrun Jin ,&nbsp;Yating Lei ,&nbsp;Xinyi Sun ,&nbsp;Jiaxu Xu ,&nbsp;Juan Chen ,&nbsp;Changhao Sun","doi":"10.1016/j.eng.2024.01.020","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of precision nutrition was first proposed almost a decade ago. Current research in precision nutrition primarily focuses on comprehending individualized variations in response to dietary intake, with little attention being given to other crucial aspects of precision nutrition. Moreover, there is a dearth of comprehensive review studies that portray the landscape and framework of precision nutrition. This review commences by tracing the historical trajectory of nutritional science, with the aim of dissecting the challenges encountered in nutrition science within the new era of disease profiles. This review also deconstructs the field of precision nutrition into four key components: the proposal of the theory for individualized nutritional requirement phenotypes; the establishment of precise methods for measuring dietary intake and evaluating nutritional status; the creation of multidimensional nutritional intervention strategies that address the aspects of <em>what, how, and when to eat</em>; and the construction of a pathway for the translation and integration of scientific research into healthcare practices, utilizing artificial intelligence and information platforms. Incorporating these four components, this review further discusses prospective avenues that warrant exploration to achieve the objective of enhancing health through precision nutrition.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"42 ","pages":"Pages 15-25"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924000754","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of precision nutrition was first proposed almost a decade ago. Current research in precision nutrition primarily focuses on comprehending individualized variations in response to dietary intake, with little attention being given to other crucial aspects of precision nutrition. Moreover, there is a dearth of comprehensive review studies that portray the landscape and framework of precision nutrition. This review commences by tracing the historical trajectory of nutritional science, with the aim of dissecting the challenges encountered in nutrition science within the new era of disease profiles. This review also deconstructs the field of precision nutrition into four key components: the proposal of the theory for individualized nutritional requirement phenotypes; the establishment of precise methods for measuring dietary intake and evaluating nutritional status; the creation of multidimensional nutritional intervention strategies that address the aspects of what, how, and when to eat; and the construction of a pathway for the translation and integration of scientific research into healthcare practices, utilizing artificial intelligence and information platforms. Incorporating these four components, this review further discusses prospective avenues that warrant exploration to achieve the objective of enhancing health through precision nutrition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精准营养的未来格局和框架
精准营养的概念是近十年前首次提出的。目前的精准营养研究主要集中在理解膳食摄入量的个体化反应变化上,对精准营养的其他重要方面关注甚少。此外,描绘精准营养前景和框架的全面综述研究也十分匮乏。本综述从追溯营养科学的历史轨迹入手,旨在剖析营养科学在疾病谱新时代遇到的挑战。这篇综述还将精准营养领域解构为四个关键组成部分:提出个性化营养需求表型理论;建立测量膳食摄入量和评估营养状况的精确方法;创建多维营养干预策略,以解决营养不良的各个方面;以及利用人工智能和信息平台,构建将科学研究转化和整合到医疗保健实践的途径。结合这四个方面,本综述进一步讨论了值得探索的前瞻性途径,以实现通过精准营养增进健康的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Procyanidin C1 Modulates the Microbiome to Increase FOXO1 Signaling and Valeric Acid Levels to Protect the Mucosal Barrier in Inflammatory Bowel Disease The Future Landscape and Framework of Precision Nutrition Enhancing the Efficiency of Enterprise Shutdowns for Environmental Protection: An Agent-Based Modeling Approach with High Spatial–Temporal Resolution Data Unveiling the Oldest Industrial Shale Gas Reservoir: Insights for the Enrichment Pattern and Exploration Direction of Lower Cambrian Shale Gas in the Sichuan Basin Revealing High-Efficiency Natural Mycotoxin Antidotes in Zebrafish Model Screening Against Zearalenone-Induced Toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1