Alberto Andreu, Sanglae Kim, Insup Kim, Jeong-Hwan Kim, Jinhong Noh, Suhan Lee, Wonhee Lee, Pei-Chen Su, Yong-Jin Yoon
{"title":"Processing Challenges and Delamination Prevention Methods in Titanium-Steel DED 3D Printing","authors":"Alberto Andreu, Sanglae Kim, Insup Kim, Jeong-Hwan Kim, Jinhong Noh, Suhan Lee, Wonhee Lee, Pei-Chen Su, Yong-Jin Yoon","doi":"10.1007/s40684-024-00598-9","DOIUrl":null,"url":null,"abstract":"<p>Direct Energy Deposition (DED) 3D printing has gained significant importance in various industries due to its ability to fabricate complex and functional parts with reduced material waste, and to repair existing components. Titanium alloys, known for their exceptional mechanical properties and biocompatibility, are widely used in DED 3D printing applications, where they offer benefits such as lightweight design possibilities and high strength-to-weight ratio. However, given the high material cost of titanium alloys, certain applications can benefit from the coating capabilities of DED to achieve the advantages of titanium on a distinct material substrate. Nevertheless, challenges related to material incompatibility and the development of unwanted brittle phases still affect the successful deposition of titanium alloys on steel substrates with DED 3D printing. This paper investigates the processing challenges and reviews delamination prevention methods, specifically targeting titanium-steel interfaces. In particular, the formation of unwanted brittle Ti–Fe intermetallics and methods to circumvent their formation are explored. The findings of this research contribute to a deeper understanding of the processing challenges and delamination prevention methods in DED 3D printing.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"51 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00598-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Direct Energy Deposition (DED) 3D printing has gained significant importance in various industries due to its ability to fabricate complex and functional parts with reduced material waste, and to repair existing components. Titanium alloys, known for their exceptional mechanical properties and biocompatibility, are widely used in DED 3D printing applications, where they offer benefits such as lightweight design possibilities and high strength-to-weight ratio. However, given the high material cost of titanium alloys, certain applications can benefit from the coating capabilities of DED to achieve the advantages of titanium on a distinct material substrate. Nevertheless, challenges related to material incompatibility and the development of unwanted brittle phases still affect the successful deposition of titanium alloys on steel substrates with DED 3D printing. This paper investigates the processing challenges and reviews delamination prevention methods, specifically targeting titanium-steel interfaces. In particular, the formation of unwanted brittle Ti–Fe intermetallics and methods to circumvent their formation are explored. The findings of this research contribute to a deeper understanding of the processing challenges and delamination prevention methods in DED 3D printing.
期刊介绍:
Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.