{"title":"Irregular longitudinal data analysis with statistical and machine learning methods for hazardous asteroids","authors":"I. Tanriverdi , O. Ilk , M.A. Gürkan","doi":"10.1016/j.ascom.2024.100818","DOIUrl":null,"url":null,"abstract":"<div><p>Observations of the asteroids have been performed as long as it has been feasible by the available observational equipment. Recorded data, going back to 18<span><math><mtext>th</mtext></math></span> century, allowed a classification of these celestial objects’ hazardous status. Unfortunately, previous studies used methods that ignore subject dependency in Near-Earth Asteroids (NEA) data. This study aims to perform hazard classification of asteroids by proposing various statistical and machine learning methods on NEA data to overcome these shortcomings. We analyze data from 751 asteroids observed at irregular time intervals through the NASA. We compare algorithms suitable for longitudinal data structure, such as the Generalized Linear Mixed Models (GLMM), marginal model, GLMM-Tree, Historical Random Forest, GPBoost, and Spline. To the best of our knowledge and based on a comprehensive review of the existing literature, our study stands as the pioneering in the utilization of these advanced methodologies for the in-depth analysis of Near-Earth Asteroid (NEA) data. According to the findings, the accuracies of the models range from 0.89 to 0.99. The GPBoost model has the highest performance, while the marginal model has the poorest one.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"47 ","pages":"Article 100818"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000337","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Observations of the asteroids have been performed as long as it has been feasible by the available observational equipment. Recorded data, going back to 18 century, allowed a classification of these celestial objects’ hazardous status. Unfortunately, previous studies used methods that ignore subject dependency in Near-Earth Asteroids (NEA) data. This study aims to perform hazard classification of asteroids by proposing various statistical and machine learning methods on NEA data to overcome these shortcomings. We analyze data from 751 asteroids observed at irregular time intervals through the NASA. We compare algorithms suitable for longitudinal data structure, such as the Generalized Linear Mixed Models (GLMM), marginal model, GLMM-Tree, Historical Random Forest, GPBoost, and Spline. To the best of our knowledge and based on a comprehensive review of the existing literature, our study stands as the pioneering in the utilization of these advanced methodologies for the in-depth analysis of Near-Earth Asteroid (NEA) data. According to the findings, the accuracies of the models range from 0.89 to 0.99. The GPBoost model has the highest performance, while the marginal model has the poorest one.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.