Yulong Zhao, Song Liu, Kaifeng Yang, Xiuli Hu, Haifang Jiang
{"title":"Fine-control of growth and thermotolerance in plant response to heat stress","authors":"Yulong Zhao, Song Liu, Kaifeng Yang, Xiuli Hu, Haifang Jiang","doi":"10.1016/j.jia.2024.03.028","DOIUrl":null,"url":null,"abstract":"Global warming impacts plant growth and development, which in turn threatens food security. It has become clear that plants how to response warm-temperature (such as thermomorphogenesis) and high-temperature stress. At the molecular level, many small molecules play crucial roles in balancing growth and defense, achieving high and stable yields by fine-tuning in response to external stimuli. Therefore, it is essential to understand the molecular mechanisms underlying how plants grow in response to heat stress and how they can adjust their biological processes to survive heat stress conditions. In this review, we summarized the heat-responsive genetic networks in plants and crop plants based on recent studies. Focus on how plants sense the elevated temperatures and initiate cellular and metabolic responses that enable them to adapt to the adverse growing conditions. We also describe the trade-off between plant growth and responses to heat stress. Specifically, we address the regulatory network of plant response to the heat stress, which will facilitate the discovery of novel thermotolerant genes and be helpful to open new opportunities for agricultural applications.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"54 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.03.028","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming impacts plant growth and development, which in turn threatens food security. It has become clear that plants how to response warm-temperature (such as thermomorphogenesis) and high-temperature stress. At the molecular level, many small molecules play crucial roles in balancing growth and defense, achieving high and stable yields by fine-tuning in response to external stimuli. Therefore, it is essential to understand the molecular mechanisms underlying how plants grow in response to heat stress and how they can adjust their biological processes to survive heat stress conditions. In this review, we summarized the heat-responsive genetic networks in plants and crop plants based on recent studies. Focus on how plants sense the elevated temperatures and initiate cellular and metabolic responses that enable them to adapt to the adverse growing conditions. We also describe the trade-off between plant growth and responses to heat stress. Specifically, we address the regulatory network of plant response to the heat stress, which will facilitate the discovery of novel thermotolerant genes and be helpful to open new opportunities for agricultural applications.
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.