Development of an Agrobacterium tumefaciens-mediate transformation system for somatic embryos and transcriptome analysis of LcMYB1’s inhibitory effect on somatic embryogenesis in Litchi chinensis.
Yaqi Qin, Bo Zhang, Xueliang Luo, Shiqian Wang, Jiaxin Fu, Zhike Zhang, Yonghua Qin, Jietang Zhao, Guibing Hu
{"title":"Development of an Agrobacterium tumefaciens-mediate transformation system for somatic embryos and transcriptome analysis of LcMYB1’s inhibitory effect on somatic embryogenesis in Litchi chinensis.","authors":"Yaqi Qin, Bo Zhang, Xueliang Luo, Shiqian Wang, Jiaxin Fu, Zhike Zhang, Yonghua Qin, Jietang Zhao, Guibing Hu","doi":"10.1016/j.jia.2024.03.007","DOIUrl":null,"url":null,"abstract":"Litchi holds paramount economic significance as a global fruit crop. However, the advancement of litchi functional genomics encounters substantial obstacles due to its recalcitrance to stable transformation. Here, we present an efficacious -mediated transformation system in somatic embryo of ‘Heiye’ litchi. This system was developed through meticulous optimization of variables encompassing explant selection, strain delineation, bacterium concentration, infection duration, and infection methodology. The subsequent validation of the transformation technique in litchi was realized through the ectopic expression of , resulting in the generation of transgenic calli. However, it was discerned that the differentiation of transgenic calli into somatic embryos encountered substantial challenges. To delve into the intricate molecular underpinnings of ’s inhibitory role in somatic embryo induction, a comprehensive transcriptome analysis was conducted encompassing embryogenic calli (C), globular embryos (G), and transgenic calli (TC). A total of 1166 common differentially expressed genes (DEGs) were identified between C-vs-G and C-vs-TC. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these common DEGs were most related to plant hormone signal transduction pathways. Furthermore, RT-qPCR corroborated pronounced down-regulation of numerous genes intricately associated with somatic embryos induction within the transgenic calli. The development of this transformation system has provided valuable support for functional genomics research in litchi.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"167 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.03.007","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Litchi holds paramount economic significance as a global fruit crop. However, the advancement of litchi functional genomics encounters substantial obstacles due to its recalcitrance to stable transformation. Here, we present an efficacious -mediated transformation system in somatic embryo of ‘Heiye’ litchi. This system was developed through meticulous optimization of variables encompassing explant selection, strain delineation, bacterium concentration, infection duration, and infection methodology. The subsequent validation of the transformation technique in litchi was realized through the ectopic expression of , resulting in the generation of transgenic calli. However, it was discerned that the differentiation of transgenic calli into somatic embryos encountered substantial challenges. To delve into the intricate molecular underpinnings of ’s inhibitory role in somatic embryo induction, a comprehensive transcriptome analysis was conducted encompassing embryogenic calli (C), globular embryos (G), and transgenic calli (TC). A total of 1166 common differentially expressed genes (DEGs) were identified between C-vs-G and C-vs-TC. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these common DEGs were most related to plant hormone signal transduction pathways. Furthermore, RT-qPCR corroborated pronounced down-regulation of numerous genes intricately associated with somatic embryos induction within the transgenic calli. The development of this transformation system has provided valuable support for functional genomics research in litchi.
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.