Dynamic modeling of neuromodulation techniques: Towards elaboration and individual specificity

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY EPL Pub Date : 2024-01-29 DOI:10.1209/0295-5075/ad239b
Ying Yu, Fang Han, Qingyun Wang
{"title":"Dynamic modeling of neuromodulation techniques: Towards elaboration and individual specificity","authors":"Ying Yu, Fang Han, Qingyun Wang","doi":"10.1209/0295-5075/ad239b","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> Neurological disorders place a significant burden on patients, their families, and society, posing immense scientific challenges in terms of treatment and mechanistic research. Neuromodulation involves the application of invasive or non-invasive technologies to externally manipulate the nervous system of the brain, aiming to provide excitatory or inhibitory modulation that can improve abnormal neural activity. In the previous studies, neurodynamic analysis methods have not only provided novel tools for the study of neuromodulation techniques, but also provided new modulation strategies for the diagnosis and treatment of neurological diseases. In this paper, we present a brief overview of the current state of dynamic modeling and analysis for various neuromodulation techniques, including electrical, optical, magnetical, and ultrasonic approaches, and discuss the future prospects of modeling and analysis developments in neuromodulation.","PeriodicalId":11738,"journal":{"name":"EPL","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad239b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract Neurological disorders place a significant burden on patients, their families, and society, posing immense scientific challenges in terms of treatment and mechanistic research. Neuromodulation involves the application of invasive or non-invasive technologies to externally manipulate the nervous system of the brain, aiming to provide excitatory or inhibitory modulation that can improve abnormal neural activity. In the previous studies, neurodynamic analysis methods have not only provided novel tools for the study of neuromodulation techniques, but also provided new modulation strategies for the diagnosis and treatment of neurological diseases. In this paper, we present a brief overview of the current state of dynamic modeling and analysis for various neuromodulation techniques, including electrical, optical, magnetical, and ultrasonic approaches, and discuss the future prospects of modeling and analysis developments in neuromodulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经调节技术的动态建模:实现精细化和个体特异性
摘要 神经系统疾病给患者、其家庭和社会带来沉重负担,给治疗和机理研究带来巨大的科学挑战。神经调控包括应用侵入性或非侵入性技术从外部操纵大脑神经系统,旨在提供兴奋性或抑制性调控,从而改善异常的神经活动。在以往的研究中,神经动力学分析方法不仅为神经调控技术的研究提供了新的工具,也为神经系统疾病的诊断和治疗提供了新的调控策略。本文简要概述了各种神经调控技术的动态建模和分析现状,包括电学、光学、磁学和超声波方法,并讨论了神经调控领域建模和分析的未来发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
期刊最新文献
Effect of constraint relaxation on dynamic critical phenomena in minimum vertex cover problem Optimal placement of a dissimilar node for chaos suppression in networks Telling late-time tails for a massive scalar field in the background of brane-localized black holes A realistic neutrino mixing scheme arising from A4 symmetry The spectrum consistency of fractional quantum Hall effect model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1