CompLex: Legal systems through the lens of complexity science.

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY EPL Pub Date : 2025-01-01 Epub Date: 2025-01-02 DOI:10.1209/0295-5075/ad99fc
Pierpaolo Vivo, Daniel M Katz, J B Ruhl
{"title":"CompLex: Legal systems through the lens of complexity science.","authors":"Pierpaolo Vivo, Daniel M Katz, J B Ruhl","doi":"10.1209/0295-5075/ad99fc","DOIUrl":null,"url":null,"abstract":"<p><p>While \"complexity science\" has achieved significant successes in several interdisciplinary fields such as economics and biology, it is only a very recent observation that legal systems -from the way legal texts are drafted and connected to the rest of the corpus, up to the level of how judges and courts reach decisions under a variety of conflicting inputs- share several features with standard Complex Adaptive Systems. This review is meant as a gentle introduction to the use of quantitative tools and techniques of complexity science to describe, analyse, and tame the complex web of human interactions that the Law is supposed to regulate. We offer an overview of the main directions of research undertaken so far as well as an outlook for future research, and we argue that statistical physicists and complexity scientists should not ignore the opportunities offered by the cross-fertilisation between legal scholarship and complex-systems modelling.</p>","PeriodicalId":11738,"journal":{"name":"EPL","volume":"149 2","pages":"22001"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad99fc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While "complexity science" has achieved significant successes in several interdisciplinary fields such as economics and biology, it is only a very recent observation that legal systems -from the way legal texts are drafted and connected to the rest of the corpus, up to the level of how judges and courts reach decisions under a variety of conflicting inputs- share several features with standard Complex Adaptive Systems. This review is meant as a gentle introduction to the use of quantitative tools and techniques of complexity science to describe, analyse, and tame the complex web of human interactions that the Law is supposed to regulate. We offer an overview of the main directions of research undertaken so far as well as an outlook for future research, and we argue that statistical physicists and complexity scientists should not ignore the opportunities offered by the cross-fertilisation between legal scholarship and complex-systems modelling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
期刊最新文献
CompLex: Legal systems through the lens of complexity science. Tunable quantum transport in topological semimetal candidates LaxSr1-xMnSb2 Non-magnetic layers with a single symmetry-protected Dirac cone: Which additional dispersions must appear? Total free-free Gaunt factors prediction using machine learning models Prospects for the use of plasmonic vortices to control nanosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1