Hasan M Agha, Ahmed Saud Abdulhameed, Ruihong Wu, Ali H Jawad, Zeid A ALOthman, Sameer Algburi
{"title":"Chitosan-grafted salicylaldehyde/algae composite for methyl violet dye removal: adsorption modeling and optimization.","authors":"Hasan M Agha, Ahmed Saud Abdulhameed, Ruihong Wu, Ali H Jawad, Zeid A ALOthman, Sameer Algburi","doi":"10.1080/15226514.2024.2318777","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a hydrothermal approach was employed to graft chitosan (Chit)/algae (ALG) with salicylaldehyde (SA), resulting in the synthesis of a biocomposite named salicylaldehyde-based chitosan Schiff base/algae (Chit-SA/ALG). The main objective of this biocomposite was to effectively remove methyl violet (MV), an organic dye, from aqueous solutions. The adsorption performance of Chit-SA/ALG toward MV was investigated in detail, considering the effects of three factors: (A) Chit-SA/ALG dose (ranging from 0.02 to 0.1 g/100 mL), (B) pH (ranging from 4 to 10), and (C) time (ranging from 10 to 120 min). The Box-Behnken design (BBD) was utilized for experimental design and analysis. The experimental results exhibited a good fit with both the pseudo-second-order kinetic model and the Freundlich isotherm, suggesting their suitability for describing the MV adsorption process on Chit-SA/ALG. The maximum adsorption capacity of Chit-SA/ALG, as calculated by the Langmuir model, was found to be 115.6 mg/g. The remarkable adsorption of MV onto Chit-SA/ALG can be primarily attributed to the electrostatic forces between Chit-SA/ALG and MV as well as the involvement of various interactions such as n-π, π-π, and H-bond interactions. This research demonstrates that Chit-SA/ALG exhibits promising potential as a highly efficient adsorbent for the removal of organic dyes from water systems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2318777","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a hydrothermal approach was employed to graft chitosan (Chit)/algae (ALG) with salicylaldehyde (SA), resulting in the synthesis of a biocomposite named salicylaldehyde-based chitosan Schiff base/algae (Chit-SA/ALG). The main objective of this biocomposite was to effectively remove methyl violet (MV), an organic dye, from aqueous solutions. The adsorption performance of Chit-SA/ALG toward MV was investigated in detail, considering the effects of three factors: (A) Chit-SA/ALG dose (ranging from 0.02 to 0.1 g/100 mL), (B) pH (ranging from 4 to 10), and (C) time (ranging from 10 to 120 min). The Box-Behnken design (BBD) was utilized for experimental design and analysis. The experimental results exhibited a good fit with both the pseudo-second-order kinetic model and the Freundlich isotherm, suggesting their suitability for describing the MV adsorption process on Chit-SA/ALG. The maximum adsorption capacity of Chit-SA/ALG, as calculated by the Langmuir model, was found to be 115.6 mg/g. The remarkable adsorption of MV onto Chit-SA/ALG can be primarily attributed to the electrostatic forces between Chit-SA/ALG and MV as well as the involvement of various interactions such as n-π, π-π, and H-bond interactions. This research demonstrates that Chit-SA/ALG exhibits promising potential as a highly efficient adsorbent for the removal of organic dyes from water systems.