Facile protocol, metal-free, one-pot synthesis of 2-amino-4H-chromenes, benzimidazoles, and benzothiazoles via acidic ionic liquids based on pyridinium

Fereshteh Norouzi, Amir Abdolmaleki
{"title":"Facile protocol, metal-free, one-pot synthesis of 2-amino-4H-chromenes, benzimidazoles, and benzothiazoles via acidic ionic liquids based on pyridinium","authors":"Fereshteh Norouzi,&nbsp;Amir Abdolmaleki","doi":"10.1016/j.crgsc.2024.100398","DOIUrl":null,"url":null,"abstract":"<div><p>In a one-pot tandem condensation reaction, three functional ionic liquids (ILs) derived from pyridinium were employed as green, reusable, and efficient catalysts for the synthesis of important medicinal chemistry derivatives such as 2-amino-4<em>H</em>-chromenes. Additionally, benzimidazoles and benzothiazoles were synthesized using these catalysts. The ILs were favored for their easy set-up, high yields, and short synthesis times for the desired products. Moreover, the ILs could be easily recovered and reuse multiple times without significant loss of catalytic activity. Characterization of the synthesized compound was achieved through FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, TGA and melting point analysis. The compounds were prepared with good to excellent isolated yields under mild conditions, while the synthesis of benzimidazoles and benzothiazole derivatives was successful at both reflux and room temperature conditions. Finally, each class of compound was described along with its corresponding synthesis mechanism.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100398"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000031/pdfft?md5=63bc02acf9dcc2ffd1ae6f3d8b230897&pid=1-s2.0-S2666086524000031-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086524000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

In a one-pot tandem condensation reaction, three functional ionic liquids (ILs) derived from pyridinium were employed as green, reusable, and efficient catalysts for the synthesis of important medicinal chemistry derivatives such as 2-amino-4H-chromenes. Additionally, benzimidazoles and benzothiazoles were synthesized using these catalysts. The ILs were favored for their easy set-up, high yields, and short synthesis times for the desired products. Moreover, the ILs could be easily recovered and reuse multiple times without significant loss of catalytic activity. Characterization of the synthesized compound was achieved through FT-IR, 1H NMR, 13C NMR, TGA and melting point analysis. The compounds were prepared with good to excellent isolated yields under mild conditions, while the synthesis of benzimidazoles and benzothiazole derivatives was successful at both reflux and room temperature conditions. Finally, each class of compound was described along with its corresponding synthesis mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于吡啶的酸性离子液体,实现 2-氨基-4H-苯、苯并咪唑和苯并噻唑的简便、无金属、一锅式合成
在一锅串联缩合反应中,三种来自吡啶鎓的功能离子液体(ILs)被用作绿色、可重复使用和高效的催化剂,用于合成重要的药物化学衍生物,如 2-氨基-4H-苯。此外,还利用这些催化剂合成了苯并咪唑和苯并噻唑。ILs 因其易于设置、产率高和所需产品合成时间短而受到青睐。此外,ILs 易于回收和多次重复使用,而不会明显丧失催化活性。通过傅立叶变换红外光谱、1H NMR、13C NMR、TGA 和熔点分析对合成的化合物进行了表征。在温和条件下,化合物的分离产率从良好到极佳,而苯并咪唑和苯并噻唑衍生物的合成在回流和室温条件下均获得成功。最后,介绍了每一类化合物及其相应的合成机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Green and Sustainable Chemistry
Current Research in Green and Sustainable Chemistry Materials Science-Materials Chemistry
CiteScore
11.20
自引率
0.00%
发文量
116
审稿时长
78 days
期刊最新文献
Electrochemical synthesis: A flourishing green technology for the manufacturing of organic compounds Editorial Board Contents Solanesol sequential extraction from tobacco leaves using microwave-ultrasound-assisted extraction (MUAE): MAE optimization Characterization and evaluation of torrefied sugarcane bagasse to improve the fuel properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1